Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot

Abstract

A huge effort is underway to develop semiconductor nanostructures as low-noise qubits. A key source of dephasing for an electron spin qubit in GaAs and in naturally occurring Si is the nuclear spin bath. The electron spin is coupled to each nuclear spin by the hyperfine interaction. The same interaction also couples two remote nuclear spins via a common coupling to the delocalized electron. It has been suggested that this interaction limits both electron and nuclear spin coherence, but experimental proof is lacking. We show that the nuclear spin decoherence time decreases by two orders of magnitude on occupying an empty quantum dot with a single electron, recovering to its original value for two electrons. In the case of one electron, agreement with a model calculation verifies the hypothesis of an electron-mediated nuclear spin–nuclear spin coupling. The results establish a framework to understand the main features of this complex interaction in semiconductor nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concepts.
Figure 2: Rabi oscillations of the nuclear spin ensemble.
Figure 3: Hahn echo T2 measurement.
Figure 4: Nuclear spin coherence time as a function Vg.

Similar content being viewed by others

References

  1. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  CAS  Google Scholar 

  2. Chekhovich, E. A. et al. Nuclear spin effects in semiconductor quantum dots. Nature Mater. 12, 494–504 (2013).

    Article  CAS  Google Scholar 

  3. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  CAS  Google Scholar 

  4. Reilly, D. J. et al. Suppressing spin qubit dephasing by nuclear state preparation. Science 321, 817–821 (2008).

    Article  CAS  Google Scholar 

  5. Shulman, M. D. et al. Suppressing qubit dephasing using real-time Hamiltonian estimation. Nature Commun. 5, 5156 (2014).

    Article  CAS  Google Scholar 

  6. Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nature Phys. 7, 109–113 (2011).

    Article  CAS  Google Scholar 

  7. Witzel, W. M. & Sarma, S. D. Multiple-pulse coherence enhancement of solid state spin qubits. Phys. Rev. Lett. 98, 077601 (2007).

    Article  CAS  Google Scholar 

  8. Cywiński, L., Witzel, W. M. & Das Sarma, S. Electron spin dephasing due to hyperfine interactions with a nuclear spin bath. Phys. Rev. Lett. 102, 057601 (2009).

    Article  Google Scholar 

  9. Klauser, D., Coish, W. A. & Loss, D. Nuclear spin dynamics and Zeno effect in quantum dots and defect centers. Phys. Rev. B 78, 205301 (2008).

    Article  Google Scholar 

  10. Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).

    Article  Google Scholar 

  11. Yao, W., Liu, R.-B. & Sham, L. J. Theory of electron spin decoherence by interacting nuclear spins in a quantum dot. Phys. Rev. B 74, 195301 (2006).

    Article  Google Scholar 

  12. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  CAS  Google Scholar 

  13. Coish, W. A., Fischer, J. & Loss, D. Free-induction decay and envelope modulations in a narrowed nuclear spin bath. Phys. Rev. B 81, 165315 (2010).

    Article  Google Scholar 

  14. Faribault, A. & Schuricht, D. Integrability-based analysis of the hyperfine-interaction-induced decoherence in quantum dots. Phys. Rev. Lett. 110, 040405 (2013).

    Article  Google Scholar 

  15. Kondo, Y. et al. Multipulse operation and optical detection of nuclear spin coherence in a GaAs/AlGaAs quantum well. Phys. Rev. Lett. 101, 207601 (2008).

    Article  CAS  Google Scholar 

  16. Chekhovich, E. A., Hopkinson, M., Skolnick, M. S. & Tartakovskii, A. I. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain. Nature Commun. 6, 6348 (2015).

    Article  CAS  Google Scholar 

  17. Reilly, D. J. et al. Exchange control of nuclear spin diffusion in a double quantum dot. Phys. Rev. Lett. 104, 236802 (2010).

    Article  CAS  Google Scholar 

  18. Warburton, R. J. et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 (2000).

    Article  CAS  Google Scholar 

  19. Urbaszek, B. et al. Nuclear spin physics in quantum dots: an optical investigation. Rev. Mod. Phys. 85, 79–133 (2013).

    Article  CAS  Google Scholar 

  20. Munsch, M. et al. Manipulation of the nuclear spin ensemble in a quantum dot with chirped magnetic resonance pulses. Nature Nanotech. 9, 671–675 (2014).

    Article  CAS  Google Scholar 

  21. Chekhovich, E. A. et al. Structural analysis of strained quantum dots using nuclear magnetic resonance. Nature Nanotech. 7, 646–650 (2012).

    Article  CAS  Google Scholar 

  22. Bulutay, C., Chekhovich, E. A. & Tartakovskii, A. I. Nuclear magnetic resonance inverse spectra of InGaAs quantum dots: atomistic level structural information. Phys. Rev. B 90, 205425 (2014).

    Article  Google Scholar 

  23. Kloeffel, C. et al. Controlling the interaction of electron and nuclear spins in a tunnel-coupled quantum dot. Phys. Rev. Lett. 106, 046802 (2011).

    Article  CAS  Google Scholar 

  24. Warburton, R. J. Single spins in self-assembled quantum dots. Nature Mater. 12, 483–493 (2013).

    Article  CAS  Google Scholar 

  25. Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nature Phys. 9, 570–575 (2013).

    Article  CAS  Google Scholar 

  26. Kuhlmann, A. V. et al. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode. Rev. Sci. Instr. 84, 073905 (2013).

    Article  Google Scholar 

  27. Latta, C. et al. Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nature Phys. 5, 758–763 (2009).

    Article  CAS  Google Scholar 

  28. Van Veenendaal, E., Meier, B. & Kentgens, A. Frequency stepped adiabatic passage excitation of half-integer quadrupolar spin systems. Mol. Phys. 93, 195–213 (1998).

    Article  CAS  Google Scholar 

  29. Smith, J. M. et al. Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot. Phys. Rev. Lett. 94, 197402 (2005).

    Article  CAS  Google Scholar 

  30. Dreiser, J. et al. Optical investigations of quantum dot spin dynamics as a function of external electric and magnetic fields. Phys. Rev. B 77, 075317 (2008).

    Article  Google Scholar 

  31. Kroner, M. et al. Resonant two-color high-resolution spectroscopy of a negatively charged exciton in a self-assembled quantum dot. Phys. Rev. B 78, 075429 (2008).

    Article  Google Scholar 

  32. Maletinsky, P., Badolato, A. & Imamoglu, A. Dynamics of quantum dot nuclear spin polarization controlled by a single electron. Phys. Rev. Lett. 99, 056804 (2007).

    Article  CAS  Google Scholar 

  33. Paget, D., Lampel, G., Sapoval, B. & Safarov, V. I. Low field electron-nuclear spin coupling in gallium arsenide under optical pumping conditions. Phys. Rev. B 15, 5780–5796 (1977).

    Article  CAS  Google Scholar 

  34. Coish, W. A. & Baugh, J. Nuclear spins in nanostructures. Phys. Status Soldi B 246, 2203–2215 (2009).

    Article  CAS  Google Scholar 

  35. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.J.W., M.P. and D.L. acknowledge support from NCCR QSIT; R.J.W. and D.L. from EU ITN S3NANO; R.J.W. from SNF project 200020_156637; M.P. from the SNI; and A.L. and A.D.W. from Mercur Pr-2013-0001 and BMBF-Q.com-H 16KIS0109.

Author information

Authors and Affiliations

Authors

Contributions

G.W. and M.M. carried out the experiments, the data analysis and the theoretical modeling under the guidance of M.P. and R.J.W.; F.M. conducted the theoretical analysis under the guidance of D.L.; A.V.K. provided expertise in resonance fluorescence on single quantum dots; A.L. and A.D.W. carried out the molecular beam epitaxy. G.W., M.M., F.M. and R.J.W. took the lead in writing the paper and the Supplementary Information. R.J.W. managed the project.

Corresponding author

Correspondence to Mathieu Munsch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wüst, G., Munsch, M., Maier, F. et al. Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot. Nature Nanotech 11, 885–889 (2016). https://doi.org/10.1038/nnano.2016.114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing