Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A charge-density-wave oscillator based on an integrated tantalum disulfide–boron nitride–graphene device operating at room temperature

Abstract

The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals1,2,3,4. Several layered transition metal dichalcogenides, including 1T-TaSe2, 1T-TaS2 and 1T-TiSe2 exhibit unusually high transition temperatures to different CDW symmetry-reducing phases1,5,6. These transitions can be affected by the environmental conditions, film thickness and applied electric bias1. However, device applications of these intriguing systems at room temperature or their integration with other 2D materials have not been explored. Here, we demonstrate room-temperature current switching driven by a voltage-controlled phase transition between CDW states in films of 1T-TaS2 less than 10 nm thick. We exploit the transition between the nearly commensurate and the incommensurate CDW phases, which has a transition temperature of 350 K and gives an abrupt change in current accompanied by hysteresis. An integrated graphene transistor provides a voltage-tunable, matched, low-resistance load enabling precise voltage control of the circuit. The 1T-TaS2 film is capped with hexagonal boron nitride to provide protection from oxidation. The integration of these three disparate 2D materials in a way that exploits the unique properties of each yields a simple, miniaturized, voltage-controlled oscillator suitable for a variety of practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrical characteristics of thin-film 1T-TaS2.
Figure 2: Oscillator circuit of a 1T-TaS2 film with an off-chip load resistor.
Figure 3: The integrated 1T-TaS2–BN–graphene VCO.

Similar content being viewed by others

References

  1. Grüner, G. Density Waves in Solids (Addison-Wesley, 1994).

    Google Scholar 

  2. Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 23, 213001–213024 (2011).

    Article  CAS  Google Scholar 

  3. Brown, S. & Grüner, G. Charge and spin density waves. Sci. Am. 270, 50–56 (1994).

    Article  Google Scholar 

  4. Thorne, R. E. Charge-density-wave conductors. Phys. Today 49, 42–47 (1996).

    Article  CAS  Google Scholar 

  5. Porer, M. et al. Non-thermal separation of electronic and structural orders in a persisting charge density wave. Nature Mater. 13, 857–861 (2014).

    Article  CAS  Google Scholar 

  6. Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Phys. Rev. Lett. 32, 882–885 (1974).

    Article  CAS  Google Scholar 

  7. Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2 . Nature Mater. 7, 960–965 (2008).

    Article  CAS  Google Scholar 

  8. Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    Article  CAS  Google Scholar 

  9. Manzke, R., Buslaps, T., Pfalzgraf, B., Skibowski, M. & Anderson, O. On the phase transitions in 1T-TaS2 . Europhys. Lett. 8, 195–200 (1989).

    Article  CAS  Google Scholar 

  10. Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2 . Nature Nanotech. 10, 270–276 (2015).

    Article  CAS  Google Scholar 

  11. Yoshida, M. et al. Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2 . Sci. Rep. 4, 7302 (2014).

    Article  CAS  Google Scholar 

  12. Joe, Y. I. et al. Emergence of charge density wave domain walls above the superconducting dome in 1T-TiSe2 . Nature Phys. 10, 421–425 (2014).

    Article  CAS  Google Scholar 

  13. Samnakay, R. et al. Zone-folded phonons and the commensurate−incommensurate charge-density-wave transition in 1T-TaSe2 thin films. Nano Lett. 15, 2965–2973 (2015).

    Article  CAS  Google Scholar 

  14. Hollander, M. J. et al. Electrically driven reversible insulator–metal phase transition in 1T-TaS2 . Nano Lett. 15, 1861–1866 (2015).

    Article  CAS  Google Scholar 

  15. Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2 . Nature Nanotech. 10, 765–769 (2015).

    Article  CAS  Google Scholar 

  16. Tsen, A. W. et al. Structure and control of charge density waves in two-dimensional 1T-TaS2 . Proc. Natl Acad. Sci. USA 112, 15054–15059 (2016).

    Article  Google Scholar 

  17. Yoshida, M., Suzuki, R., Zhang, Y., Nakano, M. & Iwasa, Y. Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci. Adv. 1, e1500606 (2015).

    Article  Google Scholar 

  18. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  19. Doganov, R. A. et al. Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nature Commun. 6, 6647 (2014).

    Article  Google Scholar 

  20. Cao, Y.-F. et al. Transport and capacitance properties of charge density wave in few-layer 2H-TaS2 devices. Chinese Phys. Lett. 31, 077203–077206 (2014).

    Article  Google Scholar 

  21. Rhea, R. W. Oscillator Design and Computer Simulation (McGraw-Hill, 1997).

    Google Scholar 

  22. Razavi, B. A study of phase noise in CMOS oscillator. IEEE J. Solid State Circ. 31, 331–343 (1996).

    Article  Google Scholar 

  23. Stolyarov, M. A., Liu, G., Rumyantsev, S. L., Shur, M. & Balandin, A. A. Suppression of 1/f noise in near-ballistic h-BN-graphene-h-BN heterostructure field-effect transistors. Appl. Phys. Lett. 107, 023106 (2015).

    Article  Google Scholar 

  24. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 22, 666–669 (2004).

    Article  Google Scholar 

  25. Lin, Y.-M. et al. Wafer-scale graphene integrated circuit. Science 332, 1294–1297 (2011).

    Article  CAS  Google Scholar 

  26. Wu, Y. et al. High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472, 74–78 (2011).

    Article  CAS  Google Scholar 

  27. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nature Mater. 10, 569–581 (2011).

    Article  CAS  Google Scholar 

  28. Jo, I. et al. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 13, 550–554 (2013).

    Article  CAS  Google Scholar 

  29. Perfetti, L. et al. Femtosecond dynamics of electronic states in the Mott insulator 1T-TaS2 by time resolved photoelectron spectroscopy. New J. Phys. 10, 053019 (2008).

    Article  Google Scholar 

  30. Kumar, S. et al. Local temperature redistribution and structural transition during joule-heating-driven conductance switching in VO2 . Adv. Mater. 25, 6128–6132 (2013).

    Article  CAS  Google Scholar 

  31. Zimmers, A. et al. Role of thermal heating on the voltage induced insulator-metal transition in VO2 . Phys. Rev. Lett. 110, 056601 (2013).

    Article  CAS  Google Scholar 

  32. Brockman, J. S. et al. Subnanosecond incubation times for electric-field-induced metallization of a correlated electron oxide. Nature Nanotech. 9, 453–458 (2014).

    Article  CAS  Google Scholar 

  33. Horowitz, P. & Hill, W. The Art of Electronics (Cambridge Univ. Press, 1989).

    Google Scholar 

  34. Hoppensteadt, F. C. & Izhikevich, E. M. Pattern recognition via synchronization in phase-locked loop neural networks. IEEE Trans. Neural Netw. 11, 734–738 (2000).

    Article  CAS  Google Scholar 

  35. Nikonov, D. E. et al. Coupled-oscillator associative memory array operation for pattern recognition. IEEE J. Explor. Solid State Comput. Dev. Circ. 1, 85–93 (2015).

    Google Scholar 

  36. Rahman, M. H. & Hamid, M. A. K. Solid-state oscillator using a VO2 polyconductor film as a circuit element. Int. J. Electron. 42, 65–72 (1977).

    Article  Google Scholar 

  37. Fisher, B. Voltage oscillations in switching VO2 needles. J. Appl. Phys. 49, 5339–5341 (1978).

    Article  CAS  Google Scholar 

  38. Lee, Y. K. et al. Metal-insulator transition-induced electrical oscillation in vanadium dioxide thin film. Appl. Phys. Lett. 92, 162903 (2008).

    Article  Google Scholar 

  39. Leroy, J. et al. High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes. Appl. Phys. Lett. 100, 213507 (2012).

    Article  Google Scholar 

  40. Shukla, N. et al. Synchronized charge oscillations in correlated electron systems. Sci. Rep. 4, 4964 (2014).

    Article  CAS  Google Scholar 

  41. Joushaghani, A. et al. Voltage-controlled switching and thermal effects in VO2 nano-gap junctions. Appl. Phys. Lett. 104, 221904 (2014).

    Article  Google Scholar 

  42. Wang, Y. et al. Electrical oscillation in Pt/VO2 bilayer strips. J. Appl. Phys. 117, 064502 (2015).

    Article  Google Scholar 

  43. Yang, Z., Ko, C. & Ramanathan, S. Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 41, 337–367 (2011).

    Article  CAS  Google Scholar 

  44. Pergament, A. et al. Vanadium dioxide: metal-insulator transition, electrical switching and oscillations. A review of state of the art and recent progress. Preprint at http://arxiv.org/abs/1601.06246 (2016).

  45. Cavalleri, A. et al. Evidence for a structurally-driven insulator-to-metal transition in VO2: a view from the ultrafast timescale. Phys. Rev. B 70, 161102(R) (2004).

    Article  Google Scholar 

  46. Petersen, J. C. et al. Clocking the melting transition of charge and lattice order in 1T−TaS2 with ultrafast extreme-ultraviolet angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 107, 177402 (2011).

    Article  CAS  Google Scholar 

  47. Paik, H. et al. Transport properties of ultra-thin VO2 films on (001) TiO2 grown by reactive molecular-beam epitaxy. Appl. Phys. Lett. 107, 163101 (2015).

    Article  Google Scholar 

  48. Quackenbush, N. F. et al. Nature of the metal insulator transition in ultrathin epitaxial vanadium dioxide. Nano Lett. 13, 4857–4861 (2013).

    Article  CAS  Google Scholar 

  49. Lieth, R. M. A. & Terhell, J. C. J. M. in Preparation and Crystal Growth of Materials With Layered Structures Vol. 1 (ed. Lieth, R. M. A.) 186 (Springer, 1977).

    Book  Google Scholar 

Download references

Acknowledgements

Nanofabrication and device testing were supported, in part, by the National Science Foundation (NSF) and Semiconductor Research Corporation (SRC) Nanoelectronic Research Initiative (NRI) for Project 2204.001 ‘Charge-Density-Wave Computational Fabric: New State Variables and Alternative Material Implementation’ (NSF ECCS-1124733) as a part of the Nanoelectronics for 2020 and beyond (NEB-2020) programme and by the Semiconductor Research Corporation (SRC) and Defense Advanced Research Project Agency (DARPA) through STARnet Center for Function Accelerated nanoMaterial Engineering (FAME). Material synthesis and device simulations were supported by the Emerging Frontiers of Research Initiative (EFRI) 2-DARE project ‘Novel Switching Phenomena in Atomic MX2 Heterostructures for Multifunctional Applications’ (NSF 005400).

Author information

Authors and Affiliations

Authors

Contributions

A.A.B. coordinated the project and contributed to the experimental data analysis; R.K.L. led the theoretical analysis; T.T.S. supervised the material synthesis and contributed to the characterization of the materials; G.L. designed, fabricated and tested the devices and analysed the experimental data; T.R.P. synthesized TaS2 crystals; B.D. conducted computer simulations. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Alexander A. Balandin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 656 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Debnath, B., Pope, T. et al. A charge-density-wave oscillator based on an integrated tantalum disulfide–boron nitride–graphene device operating at room temperature. Nature Nanotech 11, 845–850 (2016). https://doi.org/10.1038/nnano.2016.108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing