Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases

Abstract

Malaria afflicts over 200 million people worldwide, and its most lethal etiologic agent, Plasmodium falciparum, is evolving to resist even the latest-generation therapeutics. Efficient tools for genome-directed investigations of P. falciparum-induced pathogenesis, including drug-resistance mechanisms, are clearly required. Here we report rapid and targeted genetic engineering of this parasite using zinc-finger nucleases (ZFNs) that produce a double-strand break in a user-defined locus and trigger homology-directed repair. Targeting an integrated egfp locus, we obtained gene-deletion parasites with unprecedented speed (2 weeks), both with and without direct selection. ZFNs engineered against the parasite gene pfcrt, responsible for escape under chloroquine treatment, rapidly produced parasites that carried either an allelic replacement or a panel of specified point mutations. This method will enable a diverse array of genome-editing approaches to interrogate this human pathogen.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 2A-linked ZFNs drive efficient disruption of egfp in P. falciparum.
Figure 2: ZFNs mediate efficient gene replacement of egfp.
Figure 3: ZFN-driven allelic replacement of pfcrt.
Figure 4: ZFN editing of pfcrt with and without CQ selection.

Similar content being viewed by others

References

  1. Dondorp, A.M. et al. The threat of artemisinin-resistant malaria. N. Engl. J. Med. 365, 1073–1075 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meissner, M., Breinich, M.S., Gilson, P.R. & Crabb, B.S. Molecular genetic tools in Toxoplasma and Plasmodium: achievements and future needs. Curr. Opin. Microbiol. 10, 349–356 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Anderson, T., Nkhoma, S., Ecker, A. & Fidock, D. How can we identify parasite genes that underlie antimalarial drug resistance? Pharmacogenomics 12, 59–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Bibikova, M., Golic, M., Golic, K.G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Carroll, D. Genome engineering with zinc-finger nucleases. Genetics 188, 773–782 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miller, J.C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25, 778–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Doyon, Y. et al. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat. Methods 8, 74–79 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Urnov, F.D. et al. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Gardner, M.J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Mimitou, E.P. & Symington, L.S. DNA end resection: many nucleases make light work. DNA Repair (Amst.) 8, 983–995 (2009).

    Article  CAS  Google Scholar 

  11. Szymczak, A.L. et al. Correction of multi-gene deficiency in vivo using a single ′self-cleaving′ 2A peptide-based retroviral vector. Nat. Biotechnol. 22, 589–594 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Adjalley, S.H. et al. Quantitative assessment of Plasmodium falciparum sexual development reveals potent transmission-blocking activity by methylene blue. Proc. Natl. Acad. Sci. USA 108, E1214–E1223 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fidock, D.A., Nomura, T. & Wellems, T.E. Cycloguanil and its parent compound proguanil demonstrate distinct activities against Plasmodium falciparum malaria parasites transformed with human dihydrofolate reductase. Mol. Pharmacol. 54, 1140–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Deitsch, K., Driskill, C. & Wellems, T. Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucleic Acids Res. 29, 850–853 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fidock, D.A. et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell 6, 861–871 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bray, P.G. et al. Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance. Mol. Microbiol. 56, 323–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Summers, R.L., Nash, M.N. & Martin, R.E. Know your enemy: understanding the role of PfCRT in drug resistance could lead to new antimalarial tactics. Cell. Mol. Life Sci. 69, 1967–1995 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Sidhu, A.B.S., Verdier-Pinard, D. & Fidock, D.A. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 298, 210–213 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Valderramos, S.G. et al. Identification of a mutant PfCRT-mediated chloroquine tolerance phenotype in Plasmodium falciparum. PLoS Pathog. 6, e1000887 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Doyon, J.B. et al. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nat. Cell Biol. 13, 331–337 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Doyon, Y. et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat. Biotechnol. 26, 702–708 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cooper, R.A. et al. Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in Plasmodium falciparum. Mol. Pharmacol. 61, 35–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Martin, R.E. et al. Chloroquine transport via the malaria parasite′s chloroquine resistance transporter. Science 325, 1680–1682 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Sá, J.M. et al. Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. Proc. Natl. Acad. Sci. USA 106, 18883–18889 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Elliott, B. et al. Gene conversion tracts from double-strand break repair in mammalian cells. Mol. Cell. Biol. 18, 93–101 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carvalho, T.G. & Menard, R. Manipulating the Plasmodium genome. Curr. Issues Mol. Biol. 7, 39–55 (2005).

    CAS  PubMed  Google Scholar 

  27. Sidhu, A.B.S., Valderramos, S.G. & Fidock, D.A. pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol. Microbiol. 57, 913–926 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Geurts, A.M. et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325, 433 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, M.C., Moura, P.A., Miller, E.A. & Fidock, D.A. Plasmodium falciparum Sec24 marks transitional ER that exports a model cargo via a diacidic motif. Mol. Microbiol. 68, 1535–1546 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ecker, A. et al. Evidence that mutant PfCRT facilitates the transmission to mosquitoes of chloroquine-treated Plasmodium gametocytes. J. Infect. Dis. 203, 228–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nkrumah, L.J. et al. Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase. Nat. Methods 3, 615–621 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oyola, S.O. et al. Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes. BMC Genomics 13, 1 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goecks, J., Nekrutenko, A. & Taylor, J. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ekland, E.H., Schneider, J. & Fidock, D.A. Identifying apicoplast-targeting antimalarials using high-throughput compatible approaches. FASEB J. 25, 3583–3593 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Symington (Columbia University) for helpful discussions, and the sequencing core facility and staff in the Lewis-Sigler Institute for Integrative Genomics at Princeton University. M.L. is funded by a US National Institutes of Health Director's New Innovators Award (1DP2OD001315) and receives support from the Center for Quantitative Biology (P50 GM071508). D.A.F. gratefully acknowledges support from the US National Institutes of Health (R01 AI50234 and AI079709).

Author information

Authors and Affiliations

Authors

Contributions

J.S., M.C.S.L., B.Z., A.H.L., M.L., F.D.U. and D.A.F. designed the experiments, which were performed by J.S., M.C.S.L., A.H.L. and A.E.W. B.Z., J.R.P., L.Z., E.J.R., P.D.G. and F.D.U. designed and provided the zinc-finger nucleases. J.S., M.C.S.L., A.H.L., F.D.U. and D.A.F. wrote the manuscript, with input from all authors.

Corresponding author

Correspondence to David A Fidock.

Ethics declarations

Competing interests

B.Z., J.R.P., L.Z., E.J.R., P.D.G., and F.D.U. are employees of Sangamo BioSciences, which designed and provided the ZFNs used in this study.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Tables 1–3 (PDF 2386 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straimer, J., Lee, M., Lee, A. et al. Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases. Nat Methods 9, 993–998 (2012). https://doi.org/10.1038/nmeth.2143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing