Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Live-cell 3D super-resolution imaging in thick biological samples

Abstract

We demonstrate three-dimensional (3D) super-resolution live-cell imaging through thick specimens (50–150 μm), by coupling far-field individual molecule localization with selective plane illumination microscopy (SPIM). The improved signal-to-noise ratio of selective plane illumination allows nanometric localization of single molecules in thick scattering specimens without activating or exciting molecules outside the focal plane. We report 3D super-resolution imaging of cellular spheroids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IML-SPIM 3D super-resolution imaging of nanocapsules.
Figure 2: IML-SPIM super-resolution imaging of human mammary MCF10A cell spheroids expressing H2B-PAmCherry.
Figure 3: IML-SPIM imaging of cell spheroids expressing connexin 43–PAmCherry.

Similar content being viewed by others

References

  1. Hell, S.W. Science 316, 1153–1158 (2007).

    Article  CAS  Google Scholar 

  2. Betzig, E. et al. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  3. Rust, M.J., Bates, M. & Zhuang, X. Nat. Methods 3, 793–795 (2006).

    Article  CAS  Google Scholar 

  4. Hess, S.T., Girirajan, T.P.K. & Mason, M.D. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  Google Scholar 

  5. Huang, B., Wang, W., Bates, M. & Zhuang, X. Science 319, 810–813 (2008).

    Article  CAS  Google Scholar 

  6. Juette, M.F. et al. Nat. Methods 5, 527–529 (2008).

    Article  CAS  Google Scholar 

  7. York, A.G., Ghitani, A., Vaziri, A., Davidson, M.W. & Shroff, H. Nat. Methods 8, 327–333 (2011).

    Article  CAS  Google Scholar 

  8. Giannone, G. et al. Biophys. J. 99, 1303–1310 (2010).

    Article  CAS  Google Scholar 

  9. Tokunaga, M., Imamoto, N. & Sakata–Sogawa, K. Nat. Methods 5, 159–161 (2008).

    Article  CAS  Google Scholar 

  10. Folling, J. et al. ChemPhysChem 9, 321–326 (2008).

    Article  Google Scholar 

  11. Vaziri, A., Tang, J., Shroff, H. & Shank, C. Proc. Natl. Acad. Sci. USA 105, 20221–20226 (2008).

    Article  CAS  Google Scholar 

  12. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E.H.K. Science 305, 1007–1009 (2004).

    Article  CAS  Google Scholar 

  13. Ritter, J.G., Veith, R., Siebrasse, J.P. & Kubitscheck, U. Opt. Express 16, 7142–7152 (2008).

    Article  Google Scholar 

  14. Verveer, P.J. et al. Nat. Methods 4, 311–313 (2007).

    Article  CAS  Google Scholar 

  15. Subach, F.V. et al. Nat. Methods 6, 153–159 (2009).

    Article  CAS  Google Scholar 

  16. Cella Zanacchi, F. et al. Proc. SPIE 7903, 79032W1–79032W5 (2011).

    Article  Google Scholar 

  17. Planchon, T.A. et al. Nat. Methods 8, 417–423 (2011).

    Article  CAS  Google Scholar 

  18. Truong, T.V., Supatto, W., Koos, D.S., Choi, J.M. & Fraser, S.E. Nat. Methods 8, 757–760 (2011).

    Article  CAS  Google Scholar 

  19. Greger, K., Swoger, J. & Stelzer, E.H.K. Rev. Sci. Instrum. 78, 023705–023711 (2007).

    Article  CAS  Google Scholar 

  20. Debnath, J., Muthuswamy, S.K. & Brugge, J.S. Methods 30, 256–268 (2003).

    Article  CAS  Google Scholar 

  21. Mourant, J.R. et al. Appl. Opt. 37, 3586–3593 (1998).

    Article  CAS  Google Scholar 

  22. Diaspro, A. et al. IEEE Trans. Nanobioscience 1, 110–115 (2002).

    Article  Google Scholar 

  23. Diaspro, A. et al. J. Phys. Chem. B 107, 11008–11012 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E.H.K. Stelzer, P. Keller, T.J. Gould and S.T. Hess for software and experimental training and helpful discussions, C.J.R. Sheppard, K. Braeckmans, I. Testa, G. Vicidomini, D. Mazza, S. Galiani, E. Ronzitti, B. Harke, P. Bianchini, V. Murino and R. Cingolani for critical discussions and A. Giampaoli for help editing the text. PAmCherry fusion protein was a gift from V.V. Verkhusha (Albert Einstein College of Medicine). Work partially funded by Italian Foundation for Cancer Research Institute of Molecular Oncology, Milan, Italy), EU FP7 project Single or few molecules detection by combined enhanced spectroscopies GA 229375 and Italian Programmi di ricerca di rilevante interesse nazionale 2008JZ4MLB grants.

Author information

Authors and Affiliations

Authors

Contributions

F.C.Z. and A.D. conceived the IML-SPIM imaging concept, conceived the study, designed experiments and wrote the manuscript. F.C.Z. and Z.L. realized the optical set-up and data acquisition. F.C.Z. realized imaging and data analysis. M.P.D. and F.C.Z. realized polyelectrolyte nanocapsules. M.F. and L.F. prepared biological samples. A.D.B. wrote the software tool for 3D analysis. F.C.Z., Z.L., M.F. and A.D. refined the manuscript. A.D. supervised the project.

Corresponding author

Correspondence to Alberto Diaspro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Results 1–4 (PDF 1740 kb)

Supplementary Video 1

Axial optical sectioning in a spheroid using IML-SPIM. IML-SPIM provides three-dimensional super-resolution images of nuclei in human mammary MCF10A cell spheroids expressing H2B-PAmCherry (experimental details are provided in Supplementary Fig. 6). The movie steps through x-y slices with 116 nm z separation. Scale bar, 10 μm. (AVI 277 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cella Zanacchi, F., Lavagnino, Z., Perrone Donnorso, M. et al. Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 8, 1047–1049 (2011). https://doi.org/10.1038/nmeth.1744

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1744

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing