Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Artificial niche microarrays for probing single stem cell fate in high throughput

Abstract

To understand the regulatory role of niches in maintaining stem-cell fate, multifactorial in vitro models are required. These systems should enable analysis of biochemical and biophysical niche effectors in a combinatorial fashion and in the context of a physiologically relevant cell-culture substrate. We report a microengineered platform comprised of soft hydrogel microwell arrays with modular stiffness (shear moduli of 1–50 kPa) in which individual microwells can be functionalized with combinations of proteins spotted by robotic technology. To validate the platform, we tested the effect of cell-cell interactions on adipogenic differentiation of adherent human mesenchymal stem cells (MSCs) and the effect of substrate stiffness on osteogenic MSC differentiation. We also identified artificial niches supporting extensive self-renewal of nonadherent mouse neural stem cells (NSCs). Using this method, it is possible to probe the effect of key microenvironmental perturbations on the fate of any stem cell type in single cells and in high throughput.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Production of artificial niche microarrays.
Figure 2: Modulation of MSC seeding concentration and its effect on cell fate.
Figure 3: Biochemical recapitulation of the cell density effect on MSC adipogenic differentiation.
Figure 4: Effect of matrix stiffness on MSC osteogenic differentiation.
Figure 5: Screening for the effect of niche proteins on NSC fate.

Similar content being viewed by others

References

  1. Morrison, S.J. & Spradling, A.C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008).

    Article  CAS  Google Scholar 

  2. Discher, D.E., Mooney, D.J. & Zandstra, P.W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

    Article  CAS  Google Scholar 

  3. Underhill, G.H. & Bhatia, S.N. High-throughput analysis of signals regulating stem cell fate and function. Curr. Opin. Chem. Biol. 11, 357–366 (2007).

    Article  CAS  Google Scholar 

  4. Flaim, C.J., Chien, S. & Bhatia, S.N. An extracellular matrix microarray for probing cellular differentiation. Nat. Methods 2, 119–125 (2005).

    Article  CAS  Google Scholar 

  5. Soen, Y., Mori, A., Palmer, T.D. & Brown, P.O. Exploring the regulation of human neural precursor cell differentiation using arrays of signaling microenvironments. Mol. Systems Biol. 2, 37 (2006).

    Article  Google Scholar 

  6. LaBarge, M.A. et al. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integr. Biol. (Camb.) 1, 70–79 (2009).

    Article  CAS  Google Scholar 

  7. Brafman, D.A., Shah, K.D., Fellner, T., Chien, S. & Willert, K. Defining long-term maintenance conditions of human embryonic stem cells with arrayed cellular microenvironment technology. Stem Cells Dev. 18, 1141–1154 (2009).

    Article  Google Scholar 

  8. Charnley, M., Textor, M., Khademhosseini, A. & Lutolf, M.P. Integration column: microwell arrays for mammalian cell culture. Integr. Biol. 1, 625–634 (2009).

    Article  CAS  Google Scholar 

  9. Hwang, Y.S. et al. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc. Natl. Acad. Sci. USA 106, 16978–16983 (2009).

    Article  CAS  Google Scholar 

  10. Chin, V.I. et al. Microfabricated platform for studying stem cell fates. Biotechnol. Bioeng. 88, 399–415 (2004).

    Article  CAS  Google Scholar 

  11. Lutolf, M.P., Doyonnas, R., Havenstrite, K., Koleckar, K. & Blau, H.M. Perturbation of single hematopoietic stem cell fates in artificial niches. Integr. Biol. (Camb.) 1, 59–69 (2009).

    Article  CAS  Google Scholar 

  12. Kurth, I., Franke, K., Pompe, T., Bornhauser, M. & Werner, C. Hematopoietic stem and progenitor cells in adhesive microcavities. Integr. Biol. (Camb.) 1, 427–434 (2009).

    Article  CAS  Google Scholar 

  13. Gilbert, P.M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).

    Article  CAS  Google Scholar 

  14. Lutolf, M.P. & Hubbell, J.A. Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 4, 713–722 (2003).

    Article  CAS  Google Scholar 

  15. Discher, D.E., Janmey, P. & Wang, Y.L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  Google Scholar 

  16. McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K. & Chen, C.S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  Google Scholar 

  17. Gao, L., McBeath, R. & Chen, C.S. Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin. Stem Cells 28, 564–572 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Martino, M.M. et al. Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterials 30, 1089–1097 (2009).

    Article  CAS  Google Scholar 

  19. Engler, A.J., Sen, S., Sweeney, H.L. & Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  20. Basak, O. & Taylor, V. Identification of self-replicating multipotent progenitors in the embryonic nervous system by high Notch activity and Hes5 expression. Eur. J. Neurosci. 25, 1006–1022 (2007).

    Article  Google Scholar 

  21. Cordey, M., Limacher, M., Kobel, S., Taylor, V. & Lutolf, M.P. Enhancing the reliability and throughput of neurosphere culture on hydrogel microwell arrays. Stem Cells 26, 2586–2594 (2008).

    Article  Google Scholar 

  22. Shen, Q. et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3, 289–300 (2008).

    Article  CAS  Google Scholar 

  23. Lutolf, M.P., Gilbert, P. & Blau, H.M. Designing materials to direct stem-cell fate. Nature 462, 433–441 (2009).

    Article  CAS  Google Scholar 

  24. Lecault, V. et al. High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat. Methods 8, 581–593 (2011).

    Article  CAS  Google Scholar 

  25. Ni, X.F. et al. On-chip differentiation of human mesenchymal stem cells into adipocytes. Microelectron. Eng. 85, 1330–1333 (2008).

    Article  CAS  Google Scholar 

  26. Nelson, C.M., Pirone, D.M., Tan, J.L. & Chen, C.S. Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA. Mol. Biol. Cell 15, 2943–2953 (2004).

    Article  CAS  Google Scholar 

  27. Charrasse, S., Meriane, M., Comunale, F., Blangy, A. & Gauthier-Rouviere, C. N-cadherin-dependent cell-cell contact regulates Rho GTPases and beta-catenin localization in mouse C2C12 myoblasts. J. Cell Biol. 158, 953–965 (2002).

    Article  CAS  Google Scholar 

  28. Fu, J.P. et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7, 733–795 (2010).

    Article  CAS  Google Scholar 

  29. Mu, Y.L., Lee, S.W. & Gage, F.H. Signaling in adult neurogenesis. Curr. Opin. Neurobiol. 20, 416–423 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Wehrle-Haller, M. Knobloch, A. Grapin-Botton, M. Ehrbar and A. Ranga for helpful discussions and critical reading of the manuscript, C. Huei Tan for help with the development of hydrogel printing strategies, A. Griffa for support with image analysis, K. Johnsson for the gift of the Qarray mini robotic spotter, V. Taylor for providing Hes5-GFP neural stem cells (University of Sheffield), M. Emmert and S. Hoerstrupp (Zurich University Hospital) for providing mesenchymal stem cells, and M. Martino and J. Hubbell (Ecole Polytechnique Fédérale de Lausanne) for providing recombinant fibronectin fragment 9–10. The work was funded by a European Young Investigator award (PE002-117115/1) to M.P.L., the Swiss National Science Foundation grants CR32I3_125426 and CR23I2_125290, and the Juvenile Diabetes Research Funding grant JDRF41-2009-775.

Author information

Authors and Affiliations

Authors

Contributions

S.G. and M.P.L. conceived the study, interpreted results and wrote the manuscript; S.G. conducted most experimental work (mask and press design, microwell array production, image acquisition, cell counts) and performed statistical analyses; S.H. contributed to stem cell culture, fate analyses and microfabrication; M.R. contributed to stem cell culture and fate analyses; A.N. contributed to technology development (design of press) and wrote image-analysis scripts; S.K. contributed to technology development (mask design and stamp production) and image acquisition scripts.

Corresponding author

Correspondence to Matthias P Lutolf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Supplementary Tables 1–2 (PDF 6841 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gobaa, S., Hoehnel, S., Roccio, M. et al. Artificial niche microarrays for probing single stem cell fate in high throughput. Nat Methods 8, 949–955 (2011). https://doi.org/10.1038/nmeth.1732

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1732

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing