Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Exciton antennas and concentrators from core–shell and corrugated carbon nanotube filaments of homogeneous composition

Abstract

There has been renewed interest in solar concentrators and optical antennas for improvements in photovoltaic energy harvesting and new optoelectronic devices. In this work, we dielectrophoretically assemble single-walled carbon nanotubes (SWNTs) of homogeneous composition into aligned filaments that can exchange excitation energy, concentrating it to the centre of core–shell structures with radial gradients in the optical bandgap. We find an unusually sharp, reversible decay in photoemission that occurs as such filaments are cycled from ambient temperature to only 357 K, attributed to the strongly temperature-dependent second-order Auger process. Core–shell structures consisting of annular shells of mostly (6,5) SWNTs (Eg=1.21 eV) and cores with bandgaps smaller than those of the shell (Eg=1.17 eV (7,5)–0.98 eV (8,7)) demonstrate the concentration concept: broadband absorption in the ultraviolet–near-infrared wavelength regime provides quasi-singular photoemission at the (8,7) SWNTs. This approach demonstrates the potential of specifically designed collections of nanotubes to manipulate and concentrate excitons in unique ways.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical properties of a (6,5)-enriched SWNT fibre: photoluminescence and strong EET.
Figure 2: PLE map and reversible photoluminescence change as a function of temperature.
Figure 3: Spatially resolved, temperature-dependent photoluminescence behaviour under an in-house-built dual-channel microscope.
Figure 4: Development of an exciton antenna from a core–shell carbon nanotube structure.

References

  1. Currie, M. J., Mapel, J. K., Heidel, T. D., Goffri, S. & Baldo, M. A. High-efficiency organic solar concentrators for photovoltaics. Science 321, 226–228 (2008).

    Article  CAS  Google Scholar 

  2. Yoon, J. et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nature Mater. 7, 907–915 (2008).

    Article  CAS  Google Scholar 

  3. Mühlschlegel, P., Eisler, H-J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  Google Scholar 

  4. Taminiau, T. H., Stefani, F. D., Segerink, F. B. & van Hulst, N. F. Optical antennas direct single-molecule emission. Nature Photon. 2, 234–237 (2008).

    Article  CAS  Google Scholar 

  5. van de Lagemaat, J. et al. Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode. Appl. Phys. Lett. 88, 233503 (2006).

    Article  Google Scholar 

  6. Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nature Photon. 3, 658–661 (2009).

    Article  CAS  Google Scholar 

  7. Lin, M. F. Optical spectra of single-wall carbon nanotube bundles. Phys. Rev. B 62, 13153–13159 (2000).

    Article  CAS  Google Scholar 

  8. Yu, Z. & Brus, L. Rayleigh and Raman scattering from individual carbon nanotube bundles. J. Phys. Chem. B 105, 1123–1134 (2001).

    Article  CAS  Google Scholar 

  9. Wang, F. et al. Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy. Phys. Rev. Lett. 96, 167401 (2006).

    Article  Google Scholar 

  10. Tan, P. H. et al. Photoluminescence spectroscopy of carbon nanotube bundles: Evidence for exciton energy transfer. Phys. Rev. Lett. 99, 137402 (2007).

    Article  CAS  Google Scholar 

  11. Qian, H. et al. Exciton transfer and propagation in carbon nanotubes studied by near-field optical microscopy. Phys. Status Solidi B 245, 2243–2246 (2008).

    Article  CAS  Google Scholar 

  12. Kato, T. & Hatakeyama, R. Exciton energy transfer-assisted photoluminescence brightening from freestanding single-walled carbon nanotube bundles. J. Am. Chem. Soc. 130, 8101–8107 (2008).

    Article  CAS  Google Scholar 

  13. Lefebvre, J. & Finnie, P. Photoluminescence and Förster resonance energy transfer in elemental bundles of single-walled carbon nanotubes. J. Phys. Chem. C 113, 7536–7540 (2009).

    Article  CAS  Google Scholar 

  14. Delaney, P., Choi, H. J., Ihm, J., Louie, S. G. & Cohen, M. L. Broken symmetry and pseudogaps in ropes of carbon nanotubes. Phys. Rev. B 60, 7899–7904 (1999).

    Article  CAS  Google Scholar 

  15. Kim, W-J., Nair, N., Lee, C. Y. & Strano, M. S. Covalent functionalization of single-walled carbon nanotubes alters their densities allowing electronic and other types of separation. J. Phys. Chem. C 112, 7326–7331 (2008).

    Article  CAS  Google Scholar 

  16. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006).

    Article  CAS  Google Scholar 

  17. Förster, T. 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27, 7–17 (1959).

    Article  Google Scholar 

  18. Scardaci, V. et al. Carbon nanotubes for ultrafast photonics. Phys. Status Solidi B 244, 4303–4307 (2007).

    Article  CAS  Google Scholar 

  19. Hertel, T., Fasel, R. & Moos, G. Charge-carrier dynamics in single-wall carbon nanotube bundles: A time-domain study. Appl. Phys. A 75, 449–465 (2002).

    Article  CAS  Google Scholar 

  20. Lauret, J-S. et al. Ultrafast carrier dynamics in single-wall carbon nanotubes. Phys. Rev. Lett. 90, 057404 (2003).

    Article  Google Scholar 

  21. Tang, J. et al. Assembly of 1D nanostructures into sub-micrometer diameter fibrils with controlled and variable length by dielectrophoresis. Adv. Mater. 15, 1352–1355 (2003).

    Article  CAS  Google Scholar 

  22. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. Phys. Rev. Lett. 92, 177401 (2004).

    Article  Google Scholar 

  23. Perebeinos, V., Tersoff, J. & Avouris, P. Radiative lifetime of excitons in carbon nanotubes. Nano Lett. 5, 2495–2499 (2005).

    Article  CAS  Google Scholar 

  24. Qian, H. et al. Exciton energy transfer in pairs of single-walled carbon nanotubes. Nano Lett. 8, 1363–1367 (2008).

    Article  CAS  Google Scholar 

  25. Uchida, T., Tachibana, M. & Kojima, K. Thermal relaxation kinetics of defects in single-wall carbon nanotubes. J. Appl. Phys. 101, 084313 (2007).

    Article  Google Scholar 

  26. Hagen, A. et al. Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes. Phys. Rev. Lett. 95, 197401 (2005).

    Article  Google Scholar 

  27. Trautz, M. Das Gesetz der Reaktionsgeschwindigkeit und der Gleichgewichte in Gasen. Bestätigung der Additivität von Cv-3/2R. Neue Bestimmung der Integrationskonstanten und der Moleküldurchmesser. Z. Anorg. Allg. Chem. 96, 1–28 (1916).

    Article  CAS  Google Scholar 

  28. Manzoni, C. et al. Intersubband exciton relaxation dynamics in single-walled carbon nanotubes. Phys. Rev. Lett. 94, 207401 (2005).

    Article  CAS  Google Scholar 

  29. Vyazovkin, S. Kinetic concepts of thermally stimulated reactions in solids: A view from a historical perspective. Int. Rev. Phys. Chem. 19, 45–60 (2000).

    Article  CAS  Google Scholar 

  30. Jost, W. The theory of electrolytical charge and diffusion in crystals. II. Z. Phys. Chem. A 169, 129–134 (1934).

    Google Scholar 

  31. Zeldowitsch, J. B. On the theory of reactions on powders and porous substances. Acta Phys.-Chim. URSS 10, 583–592 (1939).

    Google Scholar 

  32. O’Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  Google Scholar 

  33. Buehler, M. J. Mesoscale modeling of mechanics of carbon nanotubes: Self-assembly, self-folding, and fracture. J. Mater. Res. 21, 2855–2869 (2006).

    Article  CAS  Google Scholar 

  34. Kroeze, J. E., Koehorst, R. B. M. & Savenije, T. J. Singlet and triplet exciton diffusion in a self-organizing porphyrin antenna layer. Adv. Funct. Mater. 14, 992–998 (2004).

    Article  CAS  Google Scholar 

  35. Gottfried, D. S., Steffen, M. A. & Boxer, S. G. Large protein-induced dipoles for a symmetric carotenoid in a photosynthetic antenna complex. Science 251, 662–665 (1991).

    Article  CAS  Google Scholar 

  36. Abdula, D. & Shim, M. Performance and photovoltaic response of polymer-doped carbon nanotube p–n diodes. ACS Nano 2, 2154–2159 (2008).

    Article  CAS  Google Scholar 

  37. Bibby, T. S., Nield, J., Partensky, F. & Barber, J. Oxyphotobacteria: Antenna ring around photosystem I. Nature 413, 590 (2001).

    Article  CAS  Google Scholar 

  38. Green, B. R. & Parson, W. W. Light-Harvesting Antennas in Photosynthesis, Vol. 13 (Kluwer Academic, 2003).

    Book  Google Scholar 

Download references

Acknowledgements

M.S.S. is grateful for the NSF Career Award and the Sloan Fellowship for supporting this work. A grant to M.S.S. from the Dupont-MIT Alliance is appreciated. J-H.H. acknowledges support from the Korea Research Foundation (MOEHRD, KRF-2006-214-D00117). W-J.K. appreciates support from Kyungwon University. J.H.C. expresses his gratitude to Purdue University for financial support. The authors thank M. Zheng for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.S.S. and J-H.H. conceived and designed the experiments. J-H.H. and G.L.C.P. carried out the experiments and theoretical calculation, and J-H.H., G.L.C.P. and M.S.S. analysed the data. D.A.H. designed and built the in-house dual-channel microscope. R.M., D.A.H., W-J.K., P.W.B., C.Y.L., J.H.C., M-H.H., C.S. and C.F. partly assisted in doing experiments and commented on the results. J-H.H., G.L.C.P. and M.S.S. wrote the paper.

Corresponding author

Correspondence to Michael S. Strano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 966 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, JH., Paulus, G., Maruyama, R. et al. Exciton antennas and concentrators from core–shell and corrugated carbon nanotube filaments of homogeneous composition. Nature Mater 9, 833–839 (2010). https://doi.org/10.1038/nmat2832

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2832

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing