Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ordered nanoporous polymer–carbon composites

Abstract

Nanostructured organic materials, particularly those constructed with uniform nanopores, have been sought for a long time in materials science1,2,3,4,5,6,7. There have been many successful reports on the synthesis of nanostructured organic materials using the so-called, 'supramolecular liquid crystal templating' route8,9,10,11,12,13. Ordered nanoporous polymeric materials can also be synthesized through a polymerization route using colloidal14,15 or mesoporous silica16,17 templates. The organic pore structures constructed by these approaches, however, are lower in mechanical strength and resistance to chemical treatments than nanoporous inorganic, silica and carbon materials. Moreover, the synthesis of the organic materials is yet of limited success in the variation of pore sizes and structures, whereas a rich variety of hexagonal and cubic structures is available with tunable pore diameters in the case of the inorganic materials18,19,20. Here we describe a synthesis strategy towards ordered nanoporous organic polymers, using mesoporous carbon as the retaining framework. The polymer–carbon composite nanoporous materials exhibit the same chemical properties of the organic polymers, whereas the stability of the pores against mechanical compression, thermal and chemical treatments is greatly enhanced. The synthesis strategy can be extended to various compositions of hydrophilic and hydrophobic organic polymers, with various pore diameters, connectivity and shapes. The resultant materials exhibiting surface properties of the polymers, as well as the electric conductivity of the carbon framework, could provide new possibilities for advanced applications. Furthermore, the synthesis strategy can be extended to other inorganic supports such as mesoporous silicas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The synthesis route to nanoporous polymer–carbon composite materials.
Figure 2: X-ray powder diffraction (XRD) patterns and pore-size distributions for CMK-3 mesoporous carbon and its composite material with crosslinked polystyrene (PS-CMK-3, 45 wt% polymer-loading on carbon).
Figure 3: Elution of 'Direct Blue 15' (an organic dye with 3.3 nm rod-like molecular geometry) after adsorption on CMK-3 and sulphonated PS-CMK-3 composite.
Figure 4: The electric conductivities of CMK-3 mesoporous carbon and PS-CMK-3, plotted as a function of compressive pressure at room temperature.

Similar content being viewed by others

References

  1. Muthukumar, M., Ober, C.K. & Thomas, E.L. Competing interactions and levels of ordering in self-organizing polymeric materials. Science 277, 1225–1232 ( 1997).

    Article  CAS  Google Scholar 

  2. Langley, P.J. & Hulliger, J. Nanoporous and mesoporous organic structures: new openings for materials research. Chem. Soc. Rev. 28, 279–291 ( 1999).

    Article  CAS  Google Scholar 

  3. Wulff, G. Molecular imprinting in crosslinked materials with the aid of molecular templates-a way towards artificial antibodies. Angew. Chem. Int. Edn Engl. 34, 1812–1832 ( 1995).

    Article  CAS  Google Scholar 

  4. Buchmeiser, M.R. New ways to porous monolithic materials with uniform pore size distribution. Angew. Chem. Int. Edn Engl. 40, 3795–3797 ( 2001).

    Article  CAS  Google Scholar 

  5. Peters, E.C., Svec, F. & Fréchet, J.M.J. Rigid macroporous polymer monoliths. Adv. Mater. 11, 1169–1181 ( 1999).

    Article  CAS  Google Scholar 

  6. Widawski, G., Rawiso, M. & François, B. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369, 387–389 ( 1994).

    Article  CAS  Google Scholar 

  7. Chen, Y.Y., Ford, W.T., Materer, N.F. & Teeters, D. Facile conversion of colloidal crystals to ordered porous polymer nets. J. Am. Chem. Soc. 122, 10472–10473 ( 2000).

    Article  CAS  Google Scholar 

  8. Smith, R.C., Fischer, W.M. & Gin, D.L. Ordered poly(p-phenylenevinylene) matrix nanocomposites via lyotropic liquid-crystalline monomers. J. Am. Chem. Soc. 119, 4092–4093 ( 1997).

    Article  CAS  Google Scholar 

  9. Pindzola, B.A., Hoag, B.P. & Gin, D.L. Polymerization of a phosphonium diene amphiphile in the regular hexagonal phase with retention of mesostructure. J. Am. Chem. Soc. 123, 4617–4618 ( 2001).

    Article  CAS  Google Scholar 

  10. Zalusky, A.S., Olayo-Valles, R., Taylor, C.J. & Hillmyer, M.A. Mesoporous polystyrene monoliths. J. Am. Chem. Soc. 123, 1519–1520 ( 2001).

    Article  CAS  Google Scholar 

  11. Zalusky, A.S., Olayo-Valles, R., Wolf, J.H. & Hillmyer, M.A. Ordered nanoporous polymers from polystyrene-polylactide block copolymers. J. Am. Chem. Soc. 124, 12761–12773 ( 2002).

    Article  CAS  Google Scholar 

  12. Antonietti, M., Caruso, R.A., Göltner, C.G. & Weissenberger, M.C. Morphology variation of porous polymer gels by polymerization in lyotropic surfactant phases. Macromolecules 32, 1383–1389 ( 1999).

    Article  CAS  Google Scholar 

  13. Lee, H.K. et al. Synthesis of a nanoporous polymer with hexagonal channels from supramolecular discotic liquid crystals. Angew. Chem. Int. Edn Engl. 40, 2669–2671 ( 2001).

    Article  Google Scholar 

  14. Johnson, S.A., Ollivier, P.J. & Mallouk, T.E. Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science 283, 963–965 ( 1999).

    Article  CAS  Google Scholar 

  15. Liu, L., Li, P.S. & Asher, S.A. Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel. Nature 397, 141–144 ( 1999).

    Article  CAS  Google Scholar 

  16. Göltner, C.G. & Weissenberger,, M.C. Mesoporous organic polymers obtained by 'twostep nanocasting' Acta Polym. 49, 704–709 ( 1998).

    Article  Google Scholar 

  17. Kim, J.Y., Yoon, S.B., Kooli, F. & Yu, J.S. Synthesis of highly ordered mesoporous polymer networks. J. Mater. Chem. 11, 2912–2914 ( 2001).

    Article  CAS  Google Scholar 

  18. Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2419 ( 1997).

    Article  CAS  Google Scholar 

  19. Ying, J.Y., Mehnert, C.P. & Wong, M.S. Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Edn Engl. 38, 56–77 ( 1999).

    Article  CAS  Google Scholar 

  20. Barton, T.J. et al. Tailored porous materials. Chem. Mater. 11, 2633–2656 ( 1999).

    Article  CAS  Google Scholar 

  21. Ryoo, R., Joo, S.H. & Jun, S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 103, 7743–7746 ( 1999).

    Article  CAS  Google Scholar 

  22. Jun, S. et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 122, 10712–10713 ( 2000).

    Article  CAS  Google Scholar 

  23. Ryoo, R., Joo S.H., Kruk, M. & Jaroniec, M. Ordered mesoporous carbons. Adv. Mater. 13, 677–681 ( 2001).

    Article  CAS  Google Scholar 

  24. Joo, S.H. et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169–172 ( 2001).

    Article  CAS  Google Scholar 

  25. Lee, J.S., Joo, S.H. & Ryoo, R. Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters. J. Am. Chem. Soc. 124, 1156–1157 ( 2002).

    Article  CAS  Google Scholar 

  26. Ramsay, J.D.F, Kallus, S. & Hoinkis, E. SANS characterisation of mesoporous silicas having model structures. Stud. Surf. Sci. Catal. 128, 439–448 ( 2000).

    Article  CAS  Google Scholar 

  27. Smarsly, B., Goltner, C.G., Antonietti, M., Ruland, W. & Hoinkis, E. SANS investigation of nitrogen sorption in porous silica. J. Phys. Chem. B 105, 831–840 ( 2001).

    Article  CAS  Google Scholar 

  28. Wang, J., Musameh, M. & Lin, Y. Solubilization of carbon nanotubes by nafion towards the preparation of amperometric biosensors. J. Am. Chem. Soc. 125, 2408–2409 ( 2003).

    Article  CAS  Google Scholar 

  29. Park, J.K. et al. In vivo nitric oxide sensor using non-conducting polymer-modified carbon fiber. Biosens. Bioelectron. 13, 1187–1195 ( 1998).

    Article  CAS  Google Scholar 

  30. Smits, F.M. Measurement of sheet resistivities with the four-point probe. Bell System Tech. J. 711 ( May, 1958).

Download references

Acknowledgements

This work was supported in part by the Creative Research Initiative Program of the Korean Ministry of Science and Technology, and by the School of Molecular Science through Brain Korea 21 project. R.R. thanks O. Terasaki at Stockholm university for TEM measurements and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryong Ryoo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, M., Ryoo, R. Ordered nanoporous polymer–carbon composites. Nature Mater 2, 473–476 (2003). https://doi.org/10.1038/nmat923

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat923

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing