Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoelectrochemical water splitting in separate oxygen and hydrogen cells

Abstract

Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyser architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional photoelectrochemical systems, enabling safe and potentially affordable solar hydrogen production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Water electrolysis cell architectures.
Figure 2: Two-cell water electrolysis cycles in separate hydrogen and oxygen cells.
Figure 3: Conceptual illustration of a solar hydrogen refuelling station with distributed PEC solar cells producing O2 and a centralized H2 generator.
Figure 4: Solar water splitting system with separate oxygen and hydrogen cells.

Similar content being viewed by others

References

  1. Yoshida, T. & Kojima, K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. Electrochem. Soc. Interface 24, 45–49 (2015).

    Article  CAS  Google Scholar 

  2. Elliott, D. A balancing act for renewables. Nat. Energy 1, 15003 (2016).

    Article  Google Scholar 

  3. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  4. Modestino, M. A. & Haussener, S. An integrated device view on photo-electrochemical solar-hydrogen generation. Annu. Rev. Chem. Biomol. Eng. 6, 13–34 (2015).

    Article  CAS  Google Scholar 

  5. Ursua, A., Gandia, L. M. & Sanchis, P. Hydrogen production from water electrolysis: current status and future trends. Proc. IEEE 100, 410–426 (2012).

    Article  CAS  Google Scholar 

  6. Rausch, B., Symes, M. D., Chisholm, G. & Cronin, L. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 345, 1326–1330 (2014).

    Article  CAS  Google Scholar 

  7. Rothschild, A. & Dotan, H. Beating the efficiency of photovoltaics-powered electrolysis with tandem cell photoelectrolysis. ACS Energy Lett. 2, 45–51 (2017).

    Article  CAS  Google Scholar 

  8. Rothschild, A., Grader, G., Shter, G., Landman, A. & Dotan, H. Methods and System for Hydrogen Production by Water Electrolysis PCT/IL2015/051120 (2015).

  9. Chen, L., Dong, X., Wang, Y. & Xia, Y. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat. Commun. 7, 11741 (2016).

    Article  CAS  Google Scholar 

  10. McBreen, J. in Handbook of Battery Materials 2nd edn (eds Daniel, C.& Besenhard, J. O.) 149–168 (Wiley, 2011).

    Book  Google Scholar 

  11. Oliva, P., Laurent, J. F. & Leonardi, J. Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. J. Power Sources 8, 229–255 (1982).

    Article  CAS  Google Scholar 

  12. Bode, H., Witte, J. & Dehmelt, K. Zur Kenntnis Der Nickelhydroxidelektrode-I. Uber Das Nickel (II)-Hydroxidhydrat. Electrochim. Acta 11, 1079–1087 (1966).

    Article  CAS  Google Scholar 

  13. Vincent, C. A., Bonino, F., Lazzari, M. & Scrosati, B. Modern Batteries: An Introduction to Electrochemical Power Sources (Arnold Edward, 1984).

    Google Scholar 

  14. Hernandez-Pagan, E. A. et al. Resistance and polarization losses in aqueous buffer-membrane electrolytes for water-splitting photoelectrochemical cells. Energy Environ. Sci. 5, 7582–7589 (2012).

    Article  CAS  Google Scholar 

  15. Berger, A., Segalman, R. A. & Newman, J. Material requirements for membrane separators in a water-splitting photoelectrochemical cell. Energy Environ. Sci. 7, 1468–1476 (2014).

    Article  CAS  Google Scholar 

  16. Haussener, S. et al. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy Environ. Sci. 5, 9922–9935 (2012).

    Article  CAS  Google Scholar 

  17. Prévot, M. S. & Sivula, K. Photoelectrochemical tandem cells for solar water splitting. J. Phys. Chem. C 117, 17879–17893 (2013).

    Article  Google Scholar 

  18. The National Fire Protection Association Hydrogen Technologies Code (2016).

  19. Lopes, T., Dias, P., Andrade, L. & Mendes, A. An innovative photoelectrochemical lab device for solar water splitting. Sol. Energy Mater. Sol. Cells 128, 399–410 (2014).

    Article  CAS  Google Scholar 

  20. Modestino, M. A., Hosseini Hashemi, S. M. & Haussener, S. Mass transport aspects of electrochemical solar-hydrogen generation. Energy Environ. Sci. 9, 1533–1551 (2016).

    Article  CAS  Google Scholar 

  21. Newman, J., Hoertz, P. G., Bonino, C. A. & Trainham, J. A. Review: an economic perspective on liquid solar fuels. J. Electrochem. Soc. 159, A1722–A1729 (2012).

    Article  CAS  Google Scholar 

  22. Rodriguez, C. A., Modestino, M. A., Psaltis, D. & Moser, C. Design and cost considerations for practical solar-hydrogen generators. Energy Environ. Sci. 7, 3828–3835 (2014).

    Article  CAS  Google Scholar 

  23. Dotan, H., Mathews, N., Hisatomi, T., Grätzel, M. & Rothschild, A. On the solar to hydrogen conversion efficiency of photoelectrodes for water splitting. J. Phys. Chem. Lett. 5, 3330–3334 (2014).

    Article  CAS  Google Scholar 

  24. IXOLAR High Efficiency SolarMD Data Sheet (IXYS, 2016); http://ixapps.ixys.com/DataSheet/SLMD121H04L_Nov16.pdf

  25. Verlage, E. et al. A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III-V light absorbers protected by amorphous TiO2 films. Energy Environ. Sci. 8, 3166–3172 (2015).

    Article  CAS  Google Scholar 

  26. May, M. M., Lewerenz, H.-J., Lackner, D., Dimroth, F. & Hannappel, T. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Commun. 6, 8286 (2015).

    Article  CAS  Google Scholar 

  27. Cox, C. R., Lee, J. Z., Nocera, D. G. & Buonassisi, T. Ten-percent solar-to-fuel conversion with nonprecious materials. Proc. Natl Acad. Sci. USA 111, 14057–14061 (2014).

    Article  CAS  Google Scholar 

  28. Jingshan, L. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593–1596 (2014).

    Article  Google Scholar 

  29. Garcia, I. et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7, 13237 (2016).

    Article  Google Scholar 

  30. Shaner, M. R., Atwater, H. A., Lewis, N. S. & McFarland, E. W. A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ. Sci. 9, 2354–2371 (2016).

    Article  CAS  Google Scholar 

  31. Dotan, H. et al. Resonant light trapping in ultrathin films for water splitting. Nat. Mater. 12, 158–164 (2012).

    Article  Google Scholar 

  32. Warren, S. C. et al. Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842–849 (2013).

    Article  CAS  Google Scholar 

  33. Kim, T. W. & Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    Article  CAS  Google Scholar 

  34. Malviya, K. D., Dotan, H., Yoon, K. R., Kima, I.-D. & Rothschild, A. Rigorous substrate cleaning process for reproducible thin film hematite (α-Fe2O3) photoanodes. J. Mater. Res. 31, 1565–1573 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the Solar Fuels I-CORE programme of the Planning and Budgeting Committee and the Israel Science Foundation (Grant No. 152/11), from the Israeli Ministry of National Infrastructure, Energy and Water Resources, and from Europe’s Fuel Cell and Hydrogen Joint Undertaking (FCH-JU) under Grant Agreement no. [621252]. The results were obtained using central facilities at the Technion’s Hydrogen Technologies Research Laboratory (HTRL), supported by the Nancy and Stephen Grand Technion Energy Program (GTEP) and the Adelis Foundation. A.R. acknowledges support for developing photoelectrodes and PEC–PV tandem cells for solar water splitting from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. [617516]. G.E.S. acknowledges support from the Committee for Planning and Budgeting of the Council for Higher Education under the framework of the KAMEA Program. G.S.G. acknowledges support from the Arturo Gruenbaum Chair in Material Engineering. The authors thank Y. Lifshitz and S. C. Warren for reading the manuscript and providing useful suggestions for improving it.

Author information

Authors and Affiliations

Authors

Contributions

A.R. and G.S.G. conceived and guided the entire project. A.L., H.D. and G.E.S. designed the experiments. A.L. and H.D. performed the experiments and analysed the data. All authors contributed to the cost analysis. A.R., G.S.G. and A.L. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Gideon S. Grader or Avner Rothschild.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4020 kb)

Supplementary Information

Supplementary movie 1 (MP4 17716 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landman, A., Dotan, H., Shter, G. et al. Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nature Mater 16, 646–651 (2017). https://doi.org/10.1038/nmat4876

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing