Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Understanding soft glassy materials using an energy landscape approach

Abstract

Many seemingly different soft materials—such as soap foams, mayonnaise, toothpaste and living cells—display strikingly similar viscoelastic behaviour. A fundamental physical understanding of such soft glassy rheology and how it can manifest in such diverse materials, however, remains unknown. Here, by using a model soap foam consisting of compressible spherical bubbles, whose sizes slowly evolve and whose collective motion is simply dictated by energy minimization, we study the foam’s dynamics as it corresponds to downhill motion on an energy landscape function spanning a high-dimensional configuration space. We find that these downhill paths, when viewed in this configuration space, are, surprisingly, fractal. The complex behaviour of our model, including power-law rheology and non-diffusive bubble motion and avalanches, stems directly from the fractal dimension and energy function of these paths. Our results suggest that ubiquitous soft glassy rheology may be a consequence of emergent fractal geometry in the energy landscapes of many complex fluids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Motions of bubbles in a foam resemble spatially correlated Lévy walks.
Figure 2: Avalanche-like rearrangements release energy, displace particles and lead to unusual shear stress fluctuations.
Figure 3: Configuration space paths are self-similar fractal curves parameterized by contour length and time.
Figure 4: The energy gradient along the configuration space path is a generalized random walk, generating avalanche-like behaviour.

Similar content being viewed by others

References

  1. Liu, A. J. & Nagel, S. R. Nonlinear dynamics: jamming is not just cool any more. Nature 396, 21–22 (1998).

    Article  CAS  Google Scholar 

  2. Gopal, A. & Durian, D. Relaxing in foam. Phys. Rev. Lett. 91, 188303 (2003).

    Article  CAS  Google Scholar 

  3. Fabry, B. et al. Scaling the microrheology of living cells. Phys. Rev. Lett. 87, 148102 (2001).

    Article  CAS  Google Scholar 

  4. Bursac, P. et al. Cytoskeletal remodelling and slow dynamics in the living cell. Nature Mater. 4, 557–561 (2005).

    Article  CAS  Google Scholar 

  5. Deng, L. et al. Fast and slow dynamics of the cytoskeleton. Nature Mater. 5, 636–640 (2006).

    Article  CAS  Google Scholar 

  6. Hoffman, B. D., Massiera, G., Van Citters, K. M. & Crocker, J. C. The consensus mechanics of cultured mammalian cells. Proc. Natl Acad. Sci. USA 103, 10259–10264 (2006).

    Article  CAS  Google Scholar 

  7. Hoffman, B. D. & Crocker, J. C. Cell mechanics: dissecting the physical responses of cells to force. Annu. Rev. Biomed. Eng. 11, 259–288 (2009).

    Article  CAS  Google Scholar 

  8. Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nature Mater. 10, 469–475 (2011).

    Article  CAS  Google Scholar 

  9. Parry, B. R. et al. The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156, 183–194 (2014).

    Article  CAS  Google Scholar 

  10. Chen, D. T., Wen, Q., Janmey, P. A., Crocker, J. C. & Yodh, A. G. Rheology of soft materials. Condens. Matter Phys. 1, 301–322 (2010).

    CAS  Google Scholar 

  11. Sollich, P., Lequeux, F., Hébraud, P. & Cates, M. E. Rheology of soft glassy materials. Phys. Rev. Lett. 78, 2020–2023 (1997).

    Article  CAS  Google Scholar 

  12. Sollich, P. Rheological constitutive equation for a model of soft glassy materials. Phys. Rev. E 58, 738–759 (1998).

    Article  CAS  Google Scholar 

  13. Hébraud, P. & Lequeux, F. Mode-coupling theory for the pasty rheology of soft glassy materials. Phys. Rev. Lett. 81, 2934–2937 (1998).

    Article  Google Scholar 

  14. Sollich, P. & Cates, M. E. Thermodynamic interpretation of soft glassy rheology models. Phys. Rev. E 85, 031127 (2012).

    Article  CAS  Google Scholar 

  15. Caspi, A., Granek, R. & Elbaum, M. Enhanced diffusion in active intracellular transport. Phys. Rev. Lett. 85, 5655–5658 (2000).

    Article  CAS  Google Scholar 

  16. Gopal, A. & Durian, D. Nonlinear bubble dynamics in a slowly driven foam. Phys. Rev. Lett. 75, 2610–2613 (1995).

    Article  CAS  Google Scholar 

  17. Durian, D., Weitz, D. & Pine, D. Multiple light-scattering probes of foam structure and dynamics. Science 252, 686–688 (1991).

    Article  CAS  Google Scholar 

  18. Tewari, S. et al. Statistics of shear-induced rearrangements in a two-dimensional model foam. Phys. Rev. E 60, 4385–4396 (1999).

    Article  CAS  Google Scholar 

  19. Zargar, R., Nienhuis, B., Schall, P. & Bonn, D. Direct measurement of the free energy of aging hard sphere colloidal glasses. Phys. Rev. Lett. 110, 258301 (2013).

    Article  CAS  Google Scholar 

  20. Yoshino, H. & Zamponi, F. Shear modulus of glasses: results from the full replica-symmetry-breaking solution. Phys. Rev. E 90, 022302 (2014).

    Article  CAS  Google Scholar 

  21. DeGiuli, E., Lerner, E. & Wyart, M. Theory of the jamming transition at finite temperature. J. Chem. Phys. 142, 164503 (2015).

    Article  CAS  Google Scholar 

  22. Ono, I. K., Tewari, S., Langer, S. A. & Liu, A. J. Velocity fluctuations in a steadily sheared model foam. Phys. Rev. E 67, 061503 (2003).

    Article  CAS  Google Scholar 

  23. Rainone, C., Urbani, P., Yoshino, H. & Zamponi, F. Following the evolution of hard sphere glasses in infinite dimensions under external perturbations: compression and shear strain. Phys. Rev. Lett. 114, 015701 (2015).

    Article  CAS  Google Scholar 

  24. Wyart, M. Marginal stability constrains force and pair distributions at random close packing. Phys. Rev. Lett. 109, 125502 (2012).

    Article  CAS  Google Scholar 

  25. Lerner, E., Düring, G. & Wyart, M. Low-energy non-linear excitations in sphere packings. Soft Matter 9, 8252–8263 (2013).

    Article  CAS  Google Scholar 

  26. Biroli, G. & Urbani, P. Breakdown of elasticity in amorphous solids. Preprint at http://arxiv.org/abs/1601.06724 (2016).

  27. O’Hern, C. S., Langer, S. A., Liu, A. J. & Nagel, S. R. Random packings of frictionless particles. Phys. Rev. Lett. 88, 075507 (2002).

    Article  CAS  Google Scholar 

  28. O’Hern, C. S., Silbert, L. E., Liu, A. J. & Nagel, S. R. Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68, 011306 (2003).

    Article  CAS  Google Scholar 

  29. Manning, M. L. & Liu, A. J. Vibrational modes identify soft spots in a sheared disordered packing. Phys. Rev. Lett. 107, 108302 (2011).

    Article  CAS  Google Scholar 

  30. Cubuk, E. D. et al. Identifying structural flow defects in disordered solids using machine-learning methods. Phys. Rev. Lett. 114, 108001 (2015).

    Article  CAS  Google Scholar 

  31. Wijtmans, S. & Manning, M. L. Disentangling defects and sound modes in disordered solids. Preprint at http://arxiv.org/abs/1502.00685 (2015).

  32. Lin, J., Saade, A., Lerner, E., Rosso, A. & Wyart, M. On the density of shear transformations in amorphous solids. Europhys. Lett. 105, 26003 (2014).

    Article  CAS  Google Scholar 

  33. Lin, J. & Wyart, M. Mean-field description of plastic flow in amorphous solids. Phys. Rev. X 6, 011005 (2016).

    Google Scholar 

  34. Durian, D. Foam mechanics at the bubble scale. Phys. Rev. Lett. 75, 4780–4783 (1995).

    Article  CAS  Google Scholar 

  35. Durian, D. Bubble-scale model of foam mechanics: Melting, nonlinear behavior, and avalanches. Phys. Rev. E 55, 1739–1751 (1997).

    Article  CAS  Google Scholar 

  36. Stevenson, P. Inter-bubble gas diffusion in liquid foam. Curr. Opin. Colloid Interface Sci. 15, 374–381 (2010).

    Article  CAS  Google Scholar 

  37. Massen, C. P. & Doye, J. P. Power-law distributions for the areas of the basins of attraction on a potential energy landscape. Phys. Rev. E 75, 037101 (2007).

    Article  CAS  Google Scholar 

  38. Charbonneau, P., Kurchan, J., Parisi, G., Urbani, P. & Zamponi, F. Fractal free energy landscapes in structural glasses. Nature Commun. 5, 3725 (2014).

    Article  CAS  Google Scholar 

  39. Feitosa, K., Halt, O. L., Kamien, R. D. & Durian, D. Bubble kinetics in a steady-state column of aqueous foam. Europhys. Lett. 76, 683–689 (2006).

    Article  CAS  Google Scholar 

  40. Bitzek, E., Koskinen, P., Gähler, F., Moseler, M. & Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).

    Article  CAS  Google Scholar 

  41. Durian, D., Weitz, D. & Pine, D. Scaling behavior in shaving cream. Phys. Rev. A 44, R7902 (1991).

    Article  CAS  Google Scholar 

  42. Shlesinger, M., West, B. & Klafter, J. Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58, 1100–1103 (1987).

    Article  CAS  Google Scholar 

  43. Mantegna, R. N. & Stanley, H. E. Stochastic process with ultraslow convergence to a Gaussian: the truncated lévy flight. Phys. Rev. Lett. 73, 2946–2949 (1994).

    Article  CAS  Google Scholar 

  44. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    Article  CAS  Google Scholar 

  45. Lau, A. W., Hoffman, B. D., Davies, A., Crocker, J. C. & Lubensky, T. C. Microrheology, stress fluctuations, and active behavior of living cells. Phys. Rev. Lett. 91, 198101 (2003).

    Article  CAS  Google Scholar 

  46. Crocker, J. C. & Hoffman, B. D. Multiple-particle tracking and two-point microrheology in cells. Methods Cell Biol. 83, 141–178 (2007).

    Article  CAS  Google Scholar 

  47. Zhou, M. A new look at the atomic level virial stress: on continuum-molecular system equivalence. Proc. R. Soc. A 459, 2347–2392 (2003).

    Article  CAS  Google Scholar 

  48. Mason, T. G. Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. Rheol. Acta 39, 371–378 (2000).

    Article  CAS  Google Scholar 

  49. Dasgupta, B. R., Tee, S.-Y., Crocker, J. C., Frisken, B. & Weitz, D. Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering. Phys. Rev. E 65, 051505 (2002).

    Article  CAS  Google Scholar 

  50. Weeks, E. R. & Swinney, H. L. Anomalous diffusion resulting from strongly asymmetric random walks. Phys. Rev. E 57, 4915–4920 (1998).

    Article  CAS  Google Scholar 

  51. Maloney, C. E. & Lemaître, A. Amorphous systems in athermal, quasistatic shear. Phys. Rev. E 74, 016118 (2006).

    Article  CAS  Google Scholar 

  52. Risken, H. Fokker-Planck Equation (Springer, 1984).

    Book  Google Scholar 

  53. Crocker, J. C. & Grier, D. G. Microscopic measurement of the pair interaction potential of charge-stabilized colloid. Phys. Rev. Lett. 73, 352–355 (1994).

    Article  CAS  Google Scholar 

  54. Combe, G. & Roux, J.-N. Strain versus stress in a model granular material: a devil’s staircase. Phys. Rev. Lett. 85, 3628–3631 (2000).

    Article  CAS  Google Scholar 

  55. Van Hecke, M. Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys. Condens. Mater. 22, 033101 (2010).

    Article  CAS  Google Scholar 

  56. Ashwin, S., Blawzdziewicz, J., O’Hern, C. S. & Shattuck, M. D. Calculations of the structure of basin volumes for mechanically stable packings. Phys. Rev. E 85, 061307 (2012).

    Article  CAS  Google Scholar 

  57. Mantegna, R. N. & Stanley, H. E. Scaling behaviour in the dynamics of an economic index. Nature 376, 46–49 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks to A. J. Liu, D. J. Durian, E. R. Weeks, J. Sethna, C. P. Goodrich and J. Lin for useful discussions. H.J.H. acknowledges support from US Department of Education GAANN Fellowship P200A120246.

Author information

Authors and Affiliations

Authors

Contributions

J.C.C. and R.A.R. designed the study. H.J.H. performed the study, analysed the data and prepared the figures. J.C.C., R.A.R. and H.J.H. interpreted the data, and wrote the paper.

Corresponding authors

Correspondence to Robert A. Riggleman or John C. Crocker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 776 kb)

Supplementary Information

Supplementary Movie 1 (MP4 5393 kb)

Supplementary Information

Supplementary Movie 2 (MP4 5249 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, H., Riggleman, R. & Crocker, J. Understanding soft glassy materials using an energy landscape approach. Nature Mater 15, 1031–1036 (2016). https://doi.org/10.1038/nmat4663

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4663

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing