Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Confined linear carbon chains as a route to bulk carbyne

Abstract

Strong chemical activity and extreme instability in ambient conditions characterize carbyne, an infinite sp1 hybridized carbon chain. As a result, much less has been explored about carbyne as compared to other carbon allotropes such as fullerenes, nanotubes and graphene. Although end-capping groups can be used to stabilize carbon chains, length limitations are still a barrier for production, and even more so for application. We report a method for the bulk production of long acetylenic linear carbon chains protected by thin double-walled carbon nanotubes. The synthesis of very long arrangements is confirmed by a combination of transmission electron microscopy, X-ray diffraction and (near-field) resonance Raman spectroscopy. Our results establish a route for the bulk production of exceptionally long and stable chains composed of more than 6,000 carbon atoms, representing an elegant forerunner towards the final goal of carbyne’s bulk production.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct observation of LLCCs@DWCNTs.
Figure 2: Calculation of the optimum CNT diameter for LLCC encapsulation.
Figure 3: Raman spectra of LLCCs@DWCNTs carried out at an excitation wavelength of 568.2 nm.
Figure 4: The temperature dependence of the LLCC-band.
Figure 5: Comparison of the inverse length of linear carbon chains with the Raman response.

Similar content being viewed by others

References

  1. Hirsch, A. The era of carbon allotropes. Nature Mater. 9, 868–871 (2010).

    Article  CAS  Google Scholar 

  2. Kroto, H. W., Heath, J. R., Obrien, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. Nature 318, 162–163 (1985).

    Article  CAS  Google Scholar 

  3. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  4. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  5. Kasatochkin, V. I., Sladkov, A. M., Kudryavtsev, Y. P., Popov, N. M. & Korshak, V. V. Crystalline forms of a linear modification of carbon. Dokl. Akad. Nauk SSSR 177, 358–360 (1967).

    CAS  Google Scholar 

  6. Goresy, A. E. & Donnay, G. A new allotropic form of carbon from Ries Crater. Science 161, 363–364 (1968).

    Article  CAS  Google Scholar 

  7. Whittaker, A. G. & Kintner, P. L. Carbon: observations of new allotropic form. Science 165, 589–591 (1969).

    Article  CAS  Google Scholar 

  8. Sladkov, A. & Kudryavtsev, Y. Diamond, graphite, carbyne: allotropic forms of carbon. Priroda 5, 37–44 (1969).

    Google Scholar 

  9. Smith, P. P. K. & Buseck, P. R. Graphitic carbon in the Allende meteorite: a microstructural study. Science 212, 322–324 (1981).

    Article  CAS  Google Scholar 

  10. Smith, P. P. K. & Buseck, P. R. Carbyne forms of carbon: do they exist? Science 216, 984–986 (1982).

    Article  CAS  Google Scholar 

  11. Chalifoux, W. A. & Tykwinski, R. R. Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nature Chem. 2, 967–971 (2010).

    Article  CAS  Google Scholar 

  12. Baeyer, A. Ueber polyacetylenverbindungen. Ber. Dtsch. Chem. Ges. 18, 2269–2281 (1885).

    Article  Google Scholar 

  13. Liu, M. J., Artyukhov, V. I., Lee, H., Xu, F. B. & Yakobson, B. I. Carbyne from first principles: chain of C atoms, a nanorod or a nanorope. ACS Nano 7, 10075–10082 (2013).

    Article  CAS  Google Scholar 

  14. Baughman, R. H. Dangerously seeking linear carbon. Science 312, 1009–1010 (2006).

    Article  CAS  Google Scholar 

  15. Johnson, T. & Walton, D. Silylation as a protective method in acetylene chemistry: polyyne chain extensions using the reagents, Et3Si(C ≡ C)mH (m = 1,2,4) in mixed oxidative couplings. Tetrahedron 28, 5221–5236 (1972).

    Article  CAS  Google Scholar 

  16. Gibtner, T., Hampel, F., Gisselbrecht, J. P. & Hirsch, A. End-cap stabilized oligoynes: model compounds for the linear sp carbon allotrope carbyne. Chem. Eur. J. 8, 408–432 (2002).

    Article  CAS  Google Scholar 

  17. Nishide, D. et al. Single-wall carbon nanotubes encaging linear chain C10H2 polyyne molecules inside. Chem. Phys. Lett. 428, 356–360 (2006).

    Article  CAS  Google Scholar 

  18. Kitaura, R., Imazu, N., Kobayashi, K. & Shinohara, H. Fabrication of metal nanowires in carbon nanotubes via versatile nano-template reaction. Nano Lett. 8, 693–699 (2008).

    Article  CAS  Google Scholar 

  19. Chuvilin, A. et al. Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube. Nature Mater. 10, 687–692 (2011).

    Article  CAS  Google Scholar 

  20. Zhao, X. L., Ando, Y., Liu, Y., Jinno, M. & Suzuki, T. Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube. Phys. Rev. Lett. 90, 187401 (2003).

    Article  Google Scholar 

  21. Endo, M. et al. Nanotube coalescence-inducing mode: a novel vibrational mode in carbon systems. Small 2, 1031–1036 (2006).

    Article  CAS  Google Scholar 

  22. Zhao, C., Kitaura, R., Hara, H., Irle, S. & Shinohara, H. Growth of linear carbon chains inside thin double-wall carbon nanotubes. J. Phys. Chem. C 115, 13166–13170 (2011).

    Article  CAS  Google Scholar 

  23. Zhang, J. et al. Synthesis and transformation of linear adamantane assemblies inside carbon nanotubes. ACS Nano 6, 8674–8683 (2012).

    Article  CAS  Google Scholar 

  24. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  25. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  26. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  27. Graziano, G., Klimes, J., Fernandez-Alonso, F. & Michaelides, A. Improved description of soft layered materials with van der Waals density functional theory. J. Phys. Condens. Matter 24, 424216 (2012).

    Article  Google Scholar 

  28. Shi, L. et al. Ultra-thin double-walled carbon nanotubes: a novel nanocontainer for preparing atomic wires. Nano Res. 4, 759–766 (2011).

    Article  CAS  Google Scholar 

  29. Agarwal, N. R. et al. Structure and chain polarization of long polyynes investigated with infrared and Raman spectroscopy. J. Raman Spectrosc. 44, 1398–1410 (2013).

    Article  CAS  Google Scholar 

  30. Kuzmany, H. et al. Determination of SWCNT diameters from the Raman response of the radial breathing mode. Eur. Phys. J. B 22, 307–320 (2001).

    Article  Google Scholar 

  31. Araujo, P. T. et al. Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes. Phys. Rev. B 77, 241403 (2008).

    Article  Google Scholar 

  32. Cowley, R. A. Raman scattering from crystals of diamond structure. J. Phys.-Paris 26, 659–667 (1965).

    CAS  Google Scholar 

  33. Klemens, P. G. Anharmonic decay of optical phonons. Phys. Rev. 148, 845–848 (1966).

    Article  CAS  Google Scholar 

  34. Balkanski, M., Wallis, R. F. & Haro, E. Anharmonic effects in light-scattering due to optical phonons in silicon. Phys. Rev. B 28, 1928–1934 (1983).

    Article  CAS  Google Scholar 

  35. Kuzmany, H. Solid-State Spectroscopy: An Introduction (Springer, 1998).

    Book  Google Scholar 

  36. Kuzmany, H. Resonance Raman-scattering from neutral and doped polyacetylene. Phys. Status Solidi B 97, 521–531 (1980).

    Article  CAS  Google Scholar 

  37. Yang, S. J., Kertesz, M., Zólyomi, V. & Kürti, J. Application of a novel linear/exponential hybrid force field scaling scheme to the longitudinal Raman active mode of polyyne. J. Phys. Chem. A 111, 2434–2441 (2007).

    Article  CAS  Google Scholar 

  38. Tommasini, M. et al. Intramolecular vibrational force fields for linear carbon chains through an adaptative linear scaling scheme. J. Phys. Chem. A 111, 11645–11651 (2007).

    Article  CAS  Google Scholar 

  39. Lucotti, A. et al. Evidence for solution-state nonlinearity of sp-carbon chains based on IR and Raman spectroscopy: violation of mutual exclusion. J. Am. Chem. Soc. 131, 4239–4244 (2009).

    Article  CAS  Google Scholar 

  40. Rusznyák, Zólyomi, V., Kürti, J., Yang, S. & Kertesz, M. Bond-length alternation and charge transfer in a linear carbon chain encapsulated within a single-walled carbon nanotube. Phys. Rev. B 72, 155420 (2005).

    Article  Google Scholar 

  41. Tapia, A. et al. Density functional study of the metallization of a linear carbon chain inside single wall carbon nanotubes. Carbon 48, 4057–4062 (2010).

    Article  CAS  Google Scholar 

  42. Zanolli, Z., Onida, G. & Charlier, J. C. Quantum spin transport in carbon chains. ACS Nano 4, 5174–5180 (2010).

    Article  CAS  Google Scholar 

  43. Endo, M. et al. ‘Buckypaper’ from coaxial nanotubes. Nature 433, 476 (2005).

    Article  CAS  Google Scholar 

  44. Paier, J. et al. Screened hybrid density functionals applied to solids. J. Chem. Phys. 124, 154709 (2006).

    Article  CAS  Google Scholar 

  45. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  46. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian Science Fund (FWF, NanoBlends I 943–N19). L.S. acknowledges the scholarship supported by the China Scholarship Council. K.S. and Y.N. acknowledge the JST Research Acceleration Programme. J.K. and J.C.M. acknowledge financial support by the European Research Council Starting Grant No. 336453-PICOMAT. J.K. acknowledges FWF for funding through project MA14-009, as well as Vienna Scientific Cluster for computational time, and he also thanks G. Kresse and M. Marsman for their help in DFT calculations. S.C. acknowledges financial support from the Marie Curie Grant FP7-PEOPLE-2013-IEF project ID 628876. A.R. acknowledges financial support by the European Research Council Advanced Grant DYNamo (ERC-2010-AdG-267374), POCAONTAS (FP7-PEOPLE-2012-ITN No. 316633), MINECO (FIS2013-46159-C3-1-P), Grupo Consolidado UPV/EHU del Gobierno Vasco (IT578-13), AFOSR Grant No. FA2386-15-1-0006 AOARD 144088, and COST Action MP1306 (EUSpec). Z.J.L. and L.N. acknowledge Swiss National Science Foundation (CR2212-152944). We acknowledge H. Kuzmany for his constructive discussion about the low-temperature Raman spectra of LLCCs@DWCNTs. We thank S. Puchegger from the Faculty Center for Nanostructure Research for support with SEM imaging.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this work. L.S. and T.P. designed and supervised the experiments. L.S. prepared the samples. L.S. and P.R. did far-field Raman characterization. K.S. and Y.N. performed HRTEM characterization and simulation. J.K. and J.C.M. did the STEM measurement and simulation. J.K. did the DFT calculations. H.P. did the XRD measurement. M.W., S.C. and A.R. performed the ab initio DFT calculations. Z.J.L. and L.N. performed the near-field Raman spectroscopy of individual LLCCs@DWCNTs. L.S., P.A. and T.P. analysed data and wrote the manuscript and the Supplementary Information. All authors discussed the results and commented on the manuscript at all stages.

Corresponding author

Correspondence to Thomas Pichler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 7016 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Rohringer, P., Suenaga, K. et al. Confined linear carbon chains as a route to bulk carbyne. Nature Mater 15, 634–639 (2016). https://doi.org/10.1038/nmat4617

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4617

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing