Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics

Abstract

Insulating layers based on oxides and nitrides provide high capacitance, low leakage, high breakdown field and resistance to electrical stresses when used in electronic devices based on rigid substrates. However, their typically high process temperatures and brittleness make it difficult to achieve similar performance in flexible or organic electronics. Here, we show that poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) prepared via a one-step, solvent-free technique called initiated chemical vapour deposition (iCVD) is a versatile polymeric insulating layer that meets a wide range of requirements for next-generation electronic devices. Highly uniform and pure ultrathin films of pV3D3 with excellent insulating properties, a large energy gap (>8 eV), tunnelling-limited leakage characteristics and resistance to a tensile strain of up to 4% are demonstrated. The low process temperature, surface-growth character, and solvent-free nature of the iCVD process enable pV3D3 to be grown conformally on plastic substrates to yield flexible field-effect transistors as well as on a variety of channel layers, including organics, oxides, and graphene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: pV3D3 polymer insulating layers produced by iCVD.
Figure 2: Insulating properties of pV3D3 layers, analysed for Al/pV3D3/Al MIM devices.
Figure 3: Bottom-gated C60 FETs with ultrathin pV3D3 GIs on various gate electrodes and substrates.
Figure 4: Top-gated P3HT, IGZO and graphene FETs with pV3D3 GIs.

Similar content being viewed by others

References

  1. Kingon, A. I., Maria, J-P. & Streiffer, S. K. Alternative dielectrics to silicon dioxide for memory and logic devices. Nature 406, 1032–1038 (2000).

    Article  CAS  Google Scholar 

  2. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    Article  CAS  Google Scholar 

  3. Sekitani, T. & Someya, T. Human-friendly organic integrated circuits. Mater. Today 14, 398–407 (September, 2011).

    Article  CAS  Google Scholar 

  4. Rogers, J. A. & Huang, Y. A curvy, stretchy future for electronics. Proc. Natl Acad. Sci. USA 106, 10875–10876 (2009).

    Article  CAS  Google Scholar 

  5. Gelinck, G., Heremans, P., Nomoto, K. & Anthopoulos, T. D. Organic transistors in optical displays and microelectronics applications. Adv. Mater. 22, 3778–3798 (2010).

    Article  CAS  Google Scholar 

  6. Cheng, X. et al. Air stable cross-linked cytop ultrathin gate dielectric for high yield low-voltage top-gate organic field-effect transistors. Chem. Mater. 22, 1559–1566 (2010).

    Article  CAS  Google Scholar 

  7. Yoon, M-H., Facchetti, A. & Marks, T. J. Low-voltage organic field-effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics. J. Am. Chem. Soc. 127, 10388–10395 (2005).

    Article  CAS  Google Scholar 

  8. Hwang, D. K. et al. Top-gate organic field-effect transistors with high environmental and operational stability. Adv. Mater. 23, 1293–1298 (2011).

    Article  CAS  Google Scholar 

  9. Sekitani, T., Zschieschang, U., Klauk, H. & Someya, Y. Flexible organic transistors and circuits with extreme bending stability. Nature Mater. 9, 1015–1022 (2010).

    Article  CAS  Google Scholar 

  10. Yoon, M-H., Facchetti, A. & Marks, T. J. σ-π molecular dielectric multilayers for low-voltage organic thin-film transistors. Proc. Natl Acad. Sci. USA 102, 4678–4682 (2005).

    Article  CAS  Google Scholar 

  11. Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–465 (2013).

    Article  CAS  Google Scholar 

  12. Lewis, H. G. P. et al. HWCVD of polymers: Commercialization and scale-up. Thin Solid Films 517, 3551–3554 (2009).

    Article  Google Scholar 

  13. Alf, M. E. et al. Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv. Mater. 22, 1993–2027 (2010).

    Article  CAS  Google Scholar 

  14. Lau, K. K. S. & Gleason, K. K. Initiated chemical vapor deposition (iCVD) of poly(alkyl acrylates): An experimental study. Macromolecules 39, 3688–3694 (2006).

    Article  CAS  Google Scholar 

  15. Lau, K. K. S. & Gleason, K. K. Initiated chemical vapor deposition (iCVD) of poly(alkyl acrylates): A kinetic model. Macromolecules 39, 3695–3703 (2006).

    Article  CAS  Google Scholar 

  16. O’Shaughnessy, W. S. et al. Initiated chemical vapor deposition of trivinyltrimethylcyclotrisiloxane for biomaterial coating. Langmuir 22, 7021–7026 (2006).

    Article  Google Scholar 

  17. O’Shaughnessy, W. S. et al. Stable biopassive insulation synthesized by initiated chemical vapor deposition of poly(1, 3, 5-trivinyltrimethylcyclotrisiloxane). Biomacromolecules 8, 2564–2570 (2007).

    Article  Google Scholar 

  18. Kuribara, K. et al. Organic transistors with high thermal stability for medical applications. Nature Commun. 3, 723 (2012).

    Article  Google Scholar 

  19. Wilk, G. D., Wallace, R. M. & Anthony, J. M. High-k gate dielectrics: Current status and materials properties considerations. J Appl. Phys. 89, 5243–5275 (2001).

    Article  CAS  Google Scholar 

  20. Jackson, T. N. Beyond Moore’s law. Nature Mater. 4, 581–582 (2005).

    Article  CAS  Google Scholar 

  21. Lee, B. H. et al. Electron Devices Meeting, 2000 39–42 (IEDM Tech. Dig., IEEE, 2000).

    Google Scholar 

  22. Ragnarsson, L. A. et al. VLSI Technology, 2005 234–235 (VLSI Tech. Dig., IEEE, 2005).

    Google Scholar 

  23. Bangsaruntip, S. et al. Electron Devices Meeting (IEDM), 2009 IEEE International 297–300 (IEDM Tech. Dig., IEEE, 2009).

    Google Scholar 

  24. Tanner, C. M., Perng, Y-C., Frewin, C., Saddow, S. E. & Chang, J. P. Electrical performance of Al2O3 gate dielectric films deposited by atomic layer deposition on 4 H-SiC. Appl. Phys. Lett. 91, 203510 (2007).

    Article  Google Scholar 

  25. Hirose, M. et al. Fundamental limit of gate oxide thickness scaling in advanced MOSFETs. Semicond. Sci. Technol. 15, 485–490 (2000).

    Article  CAS  Google Scholar 

  26. Hill, R. M. Single carrier transport in thin dielectric films. Thin Solid Films 1, 39–68 (1967).

    Article  CAS  Google Scholar 

  27. Wang, W., Lee, T. & Reed, M. A. Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B 68, 035416 (2003).

    Article  Google Scholar 

  28. Lenzlinger, M. & Snow, E. H. Fowler–Nordheim tunneling into thermally grown SiO2 . J. Appl. Phys. 40, 278–283 (1969).

    Article  CAS  Google Scholar 

  29. Baxamusa, S. H., Im, S. G. & Gleason, K. K. Initiated and oxidative chemical vapor deposition: A scalable method for conformal and functional polymer films on real substrates. Phys. Chem. Chem. Phys. 11, 5227–5240 (2009).

    Article  CAS  Google Scholar 

  30. Polarch, S. & Lueder, E. The impact of structure distortion on the processing of AMLCDs on plastic substrates. J. Soc. Infect. Dis. 9, 291–294 (2001).

    Google Scholar 

  31. Zhang, X-H. & Kipplen, B. High-performance C60 n-channel organic field-effect transistors through optimization of interfaces. J. Appl. Phys. 104, 104504 (2008).

    Article  Google Scholar 

  32. Lee, B. et al. Initiated chemical vapor deposition of thermoresponsive poly(N-vinylcaprolactam) thin films for cell sheet engineering. Acta Biomaterialia 9, 7691–7698 (2013).

    Article  CAS  Google Scholar 

  33. Kwon, J-Y., Lee, D-J. & Kim, K-B. Review paper: Transparent amorphous oxide semiconductor thin film transistor. Electron. Mater. Lett. 7, 1–11 (2011).

    Article  CAS  Google Scholar 

  34. Khim, D. et al. Simple bar-coating process for large-area, high performance orgnaic field-effect transistors and ambipolar complementary integrated circuits. Adv. Mater. 25, 4302–4308 (2013).

    Article  CAS  Google Scholar 

  35. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    Article  CAS  Google Scholar 

  36. Farmer, D. B. et al. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistor. Nano Lett. 9, 4474–4478 (2009).

    Article  CAS  Google Scholar 

  37. Wang, S., Zhang, Y., Abidi, N. & Cabrales, L. Wettability and surface free energy of graphene films. Langmuir 25, 11078–11081 (2009).

    Article  CAS  Google Scholar 

  38. Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007).

    Article  CAS  Google Scholar 

  39. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) (Grant Nos 2011-0010730 (S.G.I.), 2013-065553 (B.J.C.), NRF-2014R1A2A1A11052860 (S.Y.)), and by a grant from the Center for Advanced Soft Electronics funded by MSIP as Global Frontier Project (Grant Nos CASE-2011-0031638 (B.J.C.), CASE-2014M3A6A5060948 (S.Y.), CASE-2013M3A6A5073183 (Y-Y.N.)). We are grateful to S-Y. Choi at KAIST for allowing us to use a cryogenic vacuum probe station for temperature-dependent measurement of insulator characteristics and to M. C. Barr at Ubiquitous Energy for valuable comments. We also appreciate C. S. Hwang at Electronics and Telecommunications Research Institute (ETRI) for the deposition of IGZO layers.

Author information

Authors and Affiliations

Authors

Contributions

S.G.I., S.Y., H.M. and H.S. designed the experiments on the use of iCVD-based polymers for insulators of organic and oxide electronic devices and analysed the associated experimental results. H.M. and H.S. carried out fabrication and characterization of films and devices made thereof. M.K. and S.L. also carried out the related experiments and characterization. W.C.S., H.S., J.H.B., S.G.I. and B.J.C. designed the work on graphene FETs and interpreted experimental results. W.C.S., H.S. and J.H.B. carried out the associated experiments. Y-Y.N. and W-T.P. designed the work on solution-processed OFET arrays and interpreted the related experimental results. H.M., H.S., W.C.S., B.J.C., S.Y. and S.G.I. wrote the manuscript. All authors read and commented on the manuscript. H.M., H.S. and W.C.S. contributed equally to this work. B.J.C., S.Y. and S.G.I. contributed equally as corresponding authors.

Corresponding authors

Correspondence to Byung Jin Cho, Seunghyup Yoo or Sung Gap Im.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3668 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, H., Seong, H., Shin, W. et al. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. Nature Mater 14, 628–635 (2015). https://doi.org/10.1038/nmat4237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing