Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A stable three-dimensional topological Dirac semimetal Cd3As2

Abstract

Three-dimensional (3D) topological Dirac semimetals (TDSs) are a recently proposed state of quantum matter1,2,3,4,5,6 that have attracted increasing attention in physics and materials science. A 3D TDS is not only a bulk analogue of graphene; it also exhibits non-trivial topology in its electronic structure that shares similarities with topological insulators. Moreover, a TDS can potentially be driven into other exotic phases (such as Weyl semimetals1,7, axion insulators1,4 and topological superconductors8,9), making it a unique parent compound for the study of these states and the phase transitions between them. Here, by performing angle-resolved photoemission spectroscopy, we directly observe a pair of 3D Dirac fermions in Cd3As2, proving that it is a model 3D TDS. Compared with other 3D TDSs, for example, β-cristobalite BiO2 (ref. 3) and Na3Bi (refs 4, 5), Cd3As2 is stable and has much higher Fermi velocities. Furthermore, by in situ doping we have been able to tune its Fermi energy, making it a flexible platform for exploring exotic physical phenomena.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of Cd3As2 and Fermi surface measured by ARPES.
Figure 2: General electronic structure of Cd3As2 with strong kz dependence.
Figure 3: Projections of the 3D Dirac fermions into (kx,ky,E) and (ky,kz,E) space.
Figure 4: Dispersion of the 3D Dirac fermion along all three momentum directions and EF tuning by alkaline surface doping.

References

  1. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  Google Scholar 

  2. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article  CAS  Google Scholar 

  3. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    Article  CAS  Google Scholar 

  4. Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Article  Google Scholar 

  5. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    Article  CAS  Google Scholar 

  6. Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2 . Phys. Rev. B 88, 125427 (2013).

    Article  Google Scholar 

  7. Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4 . Phys. Rev. Lett. 107, 186806 (2011).

    Article  Google Scholar 

  8. Qi, X-L. & Zhang, S-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  CAS  Google Scholar 

  9. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  Google Scholar 

  10. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  11. Herring, C. Accidental degeneracy in the energy bands of crystals. Phys. Rev. 52, 365–373 (1937).

    Article  CAS  Google Scholar 

  12. Shuichi, M. Phase transition between the quantum spin Hall and insulator phases in 3D: Emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).

    Article  Google Scholar 

  13. Volovik, G. E. in Quantum Analogues: From Phase Transitions to Black Holes and Cosmology (eds Unruh, W. G. & Schützhold, R.) Ch. 3, 31–73 (2007).

    Book  Google Scholar 

  14. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  15. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  16. Zdanowicz, W. & Zdanowicz, L. Semiconducting compounds of the AII BV group. Annu. Rev. Mater. Sci. 5, 301–328 (1975).

    Article  CAS  Google Scholar 

  17. Abrikosov, A. A. Quantum magnetoresistance. Phys. Rev. B 58, 2788–2794 (1998.).

    Article  CAS  Google Scholar 

  18. Zhang, W. et al. Topological aspect and quantum magnetoresistance of β-Ag2Te. Phys. Rev. Lett. 106, 156808 (2011).

    Article  Google Scholar 

  19. Liu, C-X. et al. Oscillatory crossover from two-dimensional to three-dimensional topological insulators. Phys. Rev. B 81, 041307 (2010).

    Article  Google Scholar 

  20. Röber, E., Hackstein, K., Coufal, H. & Sotier, S. Magnetic susceptibility of liquid Na1−xBix alloys. Phys. Status Solidi B 93, K99–K102 (1979).

    Article  Google Scholar 

  21. Koshino, M. & Ando, T. Anomalous orbital magnetism in Dirac-electron systems: Role of pseudospin paramagnetism. Phys. Rev. B 81, 195431 (2010).

    Article  Google Scholar 

  22. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  CAS  Google Scholar 

  23. Steigmann, G. A. & Goodyear, J. The crystal structure of Cd3As2 . Acta Crystallogr. B 24, 1062–1067 (1968).

    Article  CAS  Google Scholar 

  24. Damascelli, A., Hussain, Z. & Shen, Z-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  CAS  Google Scholar 

  25. Chen, Y. Studies on the electronic structures of three-dimensional topological insulators by angle resolved photoemission spectroscopy. Front. Phys. 7, 175–192 (2012).

    Article  Google Scholar 

  26. Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Preprint at http://arXiv.org/abs/1309.7978 (2013)

  27. Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 . Nature Commun. 5, 3786 (2014).

    Article  CAS  Google Scholar 

  28. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  29. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  30. Koelling, D. D. & Harmon, B. N. A technique for relativistic spin-polarised calculations. J. Phys. C 10, 3107–3114 (1977).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.L.C. and B.Z. acknowledge the support from the EPSRC (UK) grant EP/K04074X/1 and a DARPA (US) MESO project (no. N66001-11-1-4105). Z.K.L. and Z.X.S. acknowledge support from the Department of Energy, Office of Basic Energy Science (contract DE-AC02-76SF00515). The Advanced Light Source is operated by the Department of Energy, Office of Basic Energy Science (contract DE-AC02-05CH11231). Z.F., X.D. and H.M.W. acknowledge the support by the NSF of China, the National Basic Research Program of China, and the International Science and Technology Cooperation Program of China. J.J. and D.L.F. acknowledge the support by the NSF of China, the National Basic Research Program of China under grant no. 2012CB921402. J.J. acknowledges the support from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

Y.L.C. conceived the experiments. Y.L.C., Z.K.L., J.J. and B.Z. carried out ARPES measurements with the assistance of P.D., T.K., M.H. and S-K.M. D.P. synthesized and characterized bulk single crystals. Z.J.W. and H.M.W. performed ab initio calculations. All authors contributed to the scientific planning and discussions.

Corresponding author

Correspondence to Y. L. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Jiang, J., Zhou, B. et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nature Mater 13, 677–681 (2014). https://doi.org/10.1038/nmat3990

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3990

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing