Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals

Abstract

Many energy- and information-storage processes rely on phase changes of nanomaterials in reactive environments. Compared to their bulk counterparts, nanostructured materials seem to exhibit faster charging and discharging kinetics, extended life cycles, and size-tunable thermodynamics. However, in ensemble studies of these materials, it is often difficult to discriminate between intrinsic size-dependent properties and effects due to sample size and shape dispersity. Here, we detect the phase transitions of individual palladium nanocrystals during hydrogen absorption and desorption, using in situ electron energy-loss spectroscopy in an environmental transmission electron microscope. In contrast to ensemble measurements, we find that palladium nanocrystals undergo sharp transitions between the α and β phases, and that surface effects dictate the size dependence of the hydrogen absorption pressures. Our results provide a general framework for monitoring phase transitions in individual nanocrystals in a reactive environment and highlight the importance of single-particle approaches for the characterization of nanostructured materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pd nanocube TEM and in situ EELS set-up.
Figure 2: EEL spectra of a single Pd nanocrystal at varying H2 pressures.
Figure 3: Single-particle isotherms.
Figure 4: Surface stress effect on the loading equilibrium pressures.

References

  1. Pundt, A. Hydrogen in nano-sized metals. Adv. Eng. Mater. 6, 11–21 (2004).

    Article  CAS  Google Scholar 

  2. Bérubé, V., Radtke, G., Dresselhaus, M. & Chen, G. Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. Int. J. Energy Res. 31, 637–663 (2007).

    Article  Google Scholar 

  3. Bardhan, R. et al. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals. Nature Mater. 12, 905–912 (2013).

    Article  CAS  Google Scholar 

  4. Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  Google Scholar 

  5. Meethong, N., Huang, H-Y. S., Speakman, S. A., Carter, W. C. & Chiang, Y-M. Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries. Adv. Funct. Mater. 17, 1115–1123 (2007).

    Article  CAS  Google Scholar 

  6. Bruce, P. G., Scrosati, B. & Tarascon, J-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008).

    Article  CAS  Google Scholar 

  7. Chueh, W. C. et al. Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping. Nano Lett. 13, 866–872 (2013).

    Article  CAS  Google Scholar 

  8. Ebner, M., Marone, F., Stampanoni, M. & Wood, V. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342, 716–720 (2013).

    Article  CAS  Google Scholar 

  9. Jeong, J. et al. Suppression of metal–insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339, 1402–1405 (2013).

    Article  CAS  Google Scholar 

  10. Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nature Mater. 10, 591–595 (2011).

    Article  CAS  Google Scholar 

  11. Son, D. H., Hughes, S. M., Yin, Y. & Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004).

    Article  CAS  Google Scholar 

  12. Graham, T. On the absorption and dialytic separation of gases by colloid septa. Phil. Trans. R. Soc. Lond. 156, 399–439 (1866).

    Article  Google Scholar 

  13. Sachs, C. et al. Solubility of hydrogen in single-sized palladium clusters. Phys. Rev. B 64, 075408 (2001).

    Article  Google Scholar 

  14. Pundt, A. & Kirchheim, R. Hydrogen in metals: Microstructural aspects. Annu. Rev. Mater. Res. 36, 555–608 (2006).

    Article  CAS  Google Scholar 

  15. Yamauchi, M., Ikeda, R., Kitagawa, H. & Takata, M. Nanosize effects on hydrogen storage in palladium. J. Phys. Chem. C 112, 3294–3299 (2008).

    Article  CAS  Google Scholar 

  16. Zheng, H. et al. Observation of transient structural-transformation dynamics in a Cu2S nanorod. Science 333, 206–209 (2011).

    Article  CAS  Google Scholar 

  17. Routzahn, A. L. & Jain, P. K. Single-nanocrystal reaction trajectories reveal sharp cooperative transitions. Nano Lett. 12, 987–992 (2014).

    Article  Google Scholar 

  18. Liu, N., Tang, M. L., Hentschel, M., Giessen, H. & Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Mater. 10, 631–636 (2011).

    Article  CAS  Google Scholar 

  19. Shegai, T. & Langhammer, C. Hydride formation in single palladium and magnesium nanoparticles studied by nanoplasmonic dark-field scattering spectroscopy. Adv. Mater. 23, 4409–4414 (2011).

    Article  CAS  Google Scholar 

  20. Tang, M. L., Liu, N., Dionne, J. A. & Alivisatos, A. P. Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals. J. Am. Chem. Soc. 133, 13220–13223 (2011).

    Article  CAS  Google Scholar 

  21. Tittl, A., Kremers, C., Dorfmüller, J., Chigrin, D. N. & Giessen, H. Spectral shifts in optical nanoantenna-enhanced hydrogen sensors. Opt. Mater. Express 2, 111–118 (2012).

    Article  CAS  Google Scholar 

  22. García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

    Article  Google Scholar 

  23. Gremaud, R., Slaman, M., Schreuders, H., Dam, B. & Griessen, R. An optical method to determine the thermodynamics of hydrogen absorption and desorption in metals. Appl. Phys. Lett. 91, 231916 (2007).

    Article  Google Scholar 

  24. Bennett, P. A. & Fuggle, J. C. Electronic structure and surface kinetics of palladium hydride studied with x-ray photoelectron spectroscopy and electron-energy-loss spectroscopy. Phys. Rev. B 26, 6030–6039 (1982).

    Article  CAS  Google Scholar 

  25. Liu, D. R. & Brown, L. M. Characterization of palladium hydride films by electron energy loss spectroscopy and electron diffraction. Acta Metall. 36, 2597–2604 (1988).

    Article  CAS  Google Scholar 

  26. Niu, W. et al. Seed-mediated growth of nearly monodisperse palladium nanocubes with controllable sizes. Cryst. Growth Des. 8, 4440–4444 (2008).

    Article  CAS  Google Scholar 

  27. Pundt, A. et al. Hydrogen sorption in elastically soft stabilized Pd-clusters. J. Alloys Compd 293–295, 480–483 (1999).

    Article  Google Scholar 

  28. Schwarz, R. B. & Khachaturyan, A. G. Thermodynamics of open two-phase systems with coherent interfaces: Application to metal-hydrogen systems. Acta Mater. 54, 313–323 (2006).

    Article  CAS  Google Scholar 

  29. Scholl, J. A., Koh, A. L. & Dionne, J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421–427 (2012).

    Article  CAS  Google Scholar 

  30. Jung, H. J. et al. Spatial variation of available electronic excitations within individual quantum dots. Nano Lett. 13, 716–721 (2013).

    Article  CAS  Google Scholar 

  31. Wagner, H. in Topics in Applied Physics: Hydrogen in Metals I (eds Alefeld, G. & Völkl, J.) (Springer, 1978).

    Google Scholar 

  32. Nörthemann, K. & Pundt, A. Coherent-to-semi-coherent transition of precipitates in niobium-hydrogen thin films. Phys. Rev. B 78, 014105 (2008).

    Article  Google Scholar 

  33. Wagner, S. et al. Achieving coherent phase transition in palladium-hydrogen thin films. Scr. Mater. 64, 978–981 (2011).

    Article  CAS  Google Scholar 

  34. Langhammer, C., Zhdanov, V. P., Zorić, I. & Kasemo, B. Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles. Phys. Rev. Lett. 104, 135502 (2010).

    Article  Google Scholar 

  35. Wagemaker, M., Borghols, W. J. H. & Mulder, F. M. Large impact of particle size on insertion reactions. A case for anatase LixTiO2 . J. Am. Chem. Soc. 129, 4323–4327 (2007).

    Article  CAS  Google Scholar 

  36. Liu, H. et al. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes. Science 344, 1252817 (2014).

    Article  Google Scholar 

  37. Weissmüller, J. & Lemier, C. On the size dependence of the critical point of nanoscale interstitial solid solutions. Phil. Mag. Lett. 80, 411–418 (2000).

    Article  Google Scholar 

  38. Lemier, C. & Weissmüller, J. Grain boundary segregation, stress and stretch: Effects on hydrogen absorption in nanocrystalline palladium. Acta Mater. 55, 1241–1254 (2007).

    Article  CAS  Google Scholar 

  39. Mütschele, T. & Kirchheim, R. Segregation and diffusion of hydrogen in grain boundaries of palladium. Scr. Metall. 21, 135–140 (1987).

    Article  Google Scholar 

  40. Mütschele, T. & Kirchheim, R. Hydrogen as a probe for the average thickness of a grain boundary. Scr. Metall. 21, 1101–1104 (1987).

    Article  Google Scholar 

  41. Griessen, R. & Feenstra, R. Volume changes during hydrogen absorption in metals. J. Phys. F 15, 1013–1019 (1985).

    Article  CAS  Google Scholar 

  42. Brodowsky, H. On the non-ideal solution behavior of hydrogen in metals. Ber. Bunsenges. Phys. Chem. 76, 740–746 (1972).

    CAS  Google Scholar 

  43. Andreev, A. D., Downes, J. R., Faux, D. A. & O’Reilly, E. P. Strain distributions in quantum dots of arbitrary shape. J. Appl. Phys. 86, 297–305 (1999).

    Article  CAS  Google Scholar 

  44. Rockenberger, J. et al. The contribution of particle core and surface to strain, disorder and vibrations in thiolcapped CdTe nanocrystals. J. Chem. Phys. 108, 7807–7815 (1998).

    Article  CAS  Google Scholar 

  45. Fahmy, A. A. & Ragay, A. N. Thermal-expansion behavior of two-phase solids. J. Appl. Phys. 41, 5108–5111 (1970).

    Article  CAS  Google Scholar 

  46. Hsu, D. K. & Leisure, R. G. Elastic constants of palladium and β-phase palladium hydride between 4 and 300 K. Phys. Rev. B 20, 1339–1344 (1979).

    Article  CAS  Google Scholar 

  47. Wilde, M., Matsumoto, M., Fukutani, K. & Aruga, T. Depth-resolved analysis of subsurface hydrogen absorbed by Pd(100). Surf. Sci. 482–485, 346–352 (2001).

    Article  Google Scholar 

  48. Clewley, J. D., Curran, T., Flanagan, T. B. & Oates, W. A. Thermodynamic properties of hydrogen and deuterium dissolved in palladium at low concentrations over a wide temperature range. J. Chem. Soc. Faraday Trans. 1 69, 449–458 (1972).

    Article  Google Scholar 

  49. Wicke, E. & Brodowsky, H. in Topics in Applied Physics: Hydrogen in Metals II (eds Alefeld, G. & Völkl, J.) (Springer, 1978).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge scientific feedback and discussions with J. Scholl, W. D. Nix, R. Griessen and A. Pundt. J.A.D. acknowledges support from a Stanford Terman Fellowship, a Hellman Fellowship, an Air Force Office of Scientific Research Young Investigator Grant (FA9550-11-1-0024) and a National Science Foundation CAREER Award (DMR-1151231). This work was supported in part by a SLAC National Accelerator Laboratory LDRD award in concert with the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DEAC02-76SF00515. Work was also supported by the Young Energy Scientist (YES!) Fellowship of the Foundation for Fundamental Research on Matter (FOM), which is financially supported by the Netherlands Organisation for Scientific Research (NWO), and by an award from the Department of Energy (DOE) Office of Science Graduate Fellowship Program administered by the Oak Ridge Institute for Science and Education for the DOE. ORISE is managed by Oak Ridge Associated Universities (ORAU) under DOE contract number DE-AC05-06OR23100. All opinions expressed in this paper are of the authors and do not necessarily reflect the policies and views of NSF, DOE, ORAU or ORISE.

Author information

Authors and Affiliations

Authors

Contributions

A.B., T.C.N. and J.A.D. designed the experiments and A.B., T.C.N. and A.L.K. performed the experiments. A.B. and T.C.N. analysed the data and wrote the initial draft of the manuscript. J.A.D. supervised the project, and all authors discussed the results and contributed to final manuscript preparation.

Corresponding authors

Correspondence to Andrea Baldi, Tarun C. Narayan or Jennifer A. Dionne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1707 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldi, A., Narayan, T., Koh, A. et al. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nature Mater 13, 1143–1148 (2014). https://doi.org/10.1038/nmat4086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4086

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing