Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Re-entrant melting as a design principle for DNA-coated colloids

Abstract

Colloids functionalized with DNA hold great promise as building blocks for complex self-assembling structures. However, the practical use of DNA-coated colloids (DNACCs) has been limited by the narrowness of the temperature window where the target structures are both thermodynamically stable and kinetically accessible1,2,3,4,5. Here we propose a strategy to design DNACCs, whereby the colloidal suspensions crystallize on cooling and then melt on further cooling. In a phase diagram with such a re-entrant melting, kinetic trapping of the system in non-target structures should be strongly suppressed. We present model calculations and simulations that show that real DNA sequences exist that should bestow this unusual phase behaviour on suitably functionalized colloidal suspensions. We present our results for binary systems, but the concepts that we develop apply to multicomponent systems and should therefore open the way towards the design of truly complex self-assembling colloidal structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic summary of our model and its temperature behaviour.
Figure 2: Comparison of self-consistent mean-field theory and MC simulations.
Figure 3: Effect of changing the relative hybridization free energy between weak and strong bonds δweak−strong on the inter-plate potential versus temperature.
Figure 4: Phase diagram calculated for an equimolar mixture of X and X′colloids.
Figure 5: Degree of crystallinity as a function of density and temperature.

Similar content being viewed by others

References

  1. Milam, V. T., Hiddessen, A. L., Crocker, J. C., Graves, D. J. & Hammer, D. A. DNA-driven assembly of bidisperse, micron-sized colloids. Langmuir 19, 10317–10323 (2003).

    Article  CAS  Google Scholar 

  2. Kim, A. J., Biancaniello, P. L. & Crocker, J. C. Engineering DNA-mediated colloidal crystallization. Langmuir 22, 1991–2001 (2006).

    Article  CAS  Google Scholar 

  3. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature Mater. 451, 549–552 (2008).

    Article  CAS  Google Scholar 

  4. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature Mater. 451, 553–556 (2008).

    Article  CAS  Google Scholar 

  5. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-based approach for interparticle interaction control. Langmuir 23, 6305–6314 (2007).

    Article  CAS  Google Scholar 

  6. Mirkin, C. A., Letsinger, R. C., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  7. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  8. Mucic, R. C., Storhoff, J. J., Mirkin, C. A. & Letsinger, R. L. DNA-directed synthesis of binary nanoparticle network materials. J. Am. Chem. Soc. 120, 12674–12675 (1998).

    Article  CAS  Google Scholar 

  9. Leunissen, M. E., Dreyfus, R., Sha, R., Seeman, N. C. & Chaikin, P. M. Quantitative study of the association thermodynamics and kinetics of DNA-coated particles for different functionalization schemes. J. Am. Chem. Soc. 132, 1903–1913 (2010).

    Article  CAS  Google Scholar 

  10. Leunissen, M. E. et al. Switchable self-protected attractions in DNA-functionalized colloids. Nature Mater. 8, 590–595 (2009).

    Article  CAS  Google Scholar 

  11. Xiong, H., van der Lelie, D. & Gang, O. Phase behavior of nanoparticles assembled by DNA linkers. Phys. Rev. Lett. 102, 015504 (2009).

    Article  Google Scholar 

  12. Dreyfus, R. et al. Simple quantitative model for the reversible association of DNA coated colloids. Phys. Rev. Lett. 102, 048301 (2009).

    Article  Google Scholar 

  13. Dreyfus, R. et al. Aggregation–disaggregation transition of DNA-coated colloids: Experiments and theory. Phys. Rev. E 81, 041404 (2010).

    Article  Google Scholar 

  14. Jin, R., Wu, G., Li, Z., Mirkin, C. A. & Schatz, G. C. What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 125, 1643–1654 (2003).

    Article  CAS  Google Scholar 

  15. Leunissen, M. E. & Frenkel, D. Numerical study of DNA-functionalized microparticles and nanoparticles: Explicit pair potentials and their implications for phase behavior. J. Chem. Phys. 134, 084702 (2011).

    Article  Google Scholar 

  16. Lukatsky, D. B. & Frenkel, D. Surface and bulk dissolution properties, and selectivity of DNA-linked nanoparticle assemblies. J. Chem. Phys. 122, 214904 (2005).

    Article  CAS  Google Scholar 

  17. Biancaniello, P. L., Kim, A. J. & Crocker, J. C. Colloidal interactions and self-assembly using DNA hybridization. Phys. Rev. Lett. 94, 058302 (2005).

    Article  Google Scholar 

  18. Mognetti, B., Leunissen, M. E. & Frenkel, D. Controlling the temperature sensitivity of DNA-mediated colloidal interactions through competing linkages. Soft Matter 8, 2213–2221 (2012).

    Article  CAS  Google Scholar 

  19. Scarlett, R. T., Ung, M. T., Crocker, J. C. & Sinno, T. A mechanistic view of binary colloidal superlattice formation using DNA-directed interactions. Soft Matter 7, 1912–1925 (2011).

    Article  CAS  Google Scholar 

  20. Starr, F. W. & Sciortino, F. Model for assembly and gelation of four-armed DNA dendrimers. J. Phys. Condens. Matter 18, L347 (2006).

    Article  CAS  Google Scholar 

  21. Martinez-Veracoechea, F. J., Mladek, B. M., Tkachenko, A. V. & Frenkel, D. Design rule for colloidal crystals of DNA-functionalized particles. Phys. Rev. Lett. 107, 045902 (2011).

    Article  Google Scholar 

  22. Mladek, B. M., Charbonneau, P., Likos, C. N., Frenkel, D. & Kahl, G. Multiple occupancy crystals formed by purely repulsive soft particles. J. Phys. Condens. Matter 20, 494245 (2008).

    Article  Google Scholar 

  23. Wang, F. & Landau, D. P. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050–2053 (2001).

    Article  CAS  Google Scholar 

  24. Abreu, C. R. A. & Escobedo, F. A. A general framework for non-Boltzmann Monte Carlo sampling. J. Chem. Phys. 124, 054116 (2006).

    Article  Google Scholar 

  25. Lechner, W. & Dellago, C. Accurate determination of crystal structures based on averaged local bond order parameters. J. Chem. Phys. 129, 114707 (2008).

    Article  Google Scholar 

  26. Markham, N. R. & Zuker, M. Dinamelt web server for nucleic acid melting prediction. Nucleic Acids Res. 33, W577–W581 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Varilly, F. Martinez-Veracoechea and L. Fillion for useful discussions and a critical reading of the manuscript. This work was supported by the European Research Council (ERC) Advanced Grant 227758, the Wolfson Merit Award 2007/R3 of the Royal Society of London and the Engineering and Physical Sciences Research Council (EPSRC) Programme Grant EP/I001352/1.

Author information

Authors and Affiliations

Authors

Contributions

S.A-U. conceived the model, developed the analytical theory, performed the simulations and analysed the data. B.M.M. developed the analytical theory and analysed the data. D.F. initiated and supervised the research and analysed the data. All three authors contributed to writing the manuscript.

Corresponding author

Correspondence to Stefano Angioletti-Uberti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 254 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angioletti-Uberti, S., Mognetti, B. & Frenkel, D. Re-entrant melting as a design principle for DNA-coated colloids. Nature Mater 11, 518–522 (2012). https://doi.org/10.1038/nmat3314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing