Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polyvalent choline phosphate as a universal biomembrane adhesive

Abstract

Phospholipids in the cell membranes of all eukaryotic cells contain phosphatidyl choline (PC) as the headgroup. Here we show that hyperbranched polyglycerols (HPGs) decorated with the ’PC-inverse’ choline phosphate (CP) in a polyvalent fashion can electrostatically bind to a variety of cell membranes and to PC-containing liposomes, the binding strength depending on the number density of CP groups per macromolecule. We also show that HPG–CPs can cause cells to adhere with varying affinity to other cells, and that binding can be reversed by subsequent exposure to low molecular weight HPGs carrying small numbers of PCs. Moreover, PC-rich membranes adsorb and rapidly internalize fluorescent HPG–CP but not HPG–PC molecules, which suggests that HPG–CPs could be used as drug-delivery agents. CP-decorated polymers should find broad use, for instance as tissue sealants and in the self-assembly of lipid nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The universal biomembrane adhesive.
Figure 2: The biomembrane adhesion of polyvalent choline phosphate and its adhesion mechanism.
Figure 3: Effect of different parameters on the adsorption and reversibility of HPG–CP onto the RBC surface and association with morphology changes
Figure 4: Fluorescence-labelled HPG–CP adsorbed to PC-rich biomembranes.

Similar content being viewed by others

References

  1. Sohlenkamp, C., López-Lara, I. M. & Geiger, O. Biosynthesis of phosphatidylcholine in bacteria. Prog. Lipid Res. 42, 115–162 (2003).

    Article  CAS  Google Scholar 

  2. Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).

    Article  CAS  Google Scholar 

  3. Doherty, G. J. & McMahon, H. T. Mediation, modulation and consequences of membrane–cytoskeleton interactions. Annu. Rev. Biophys. 37, 65–95 (2008).

    Article  CAS  Google Scholar 

  4. Burdge, G. C., Kelly, F. J. & Postle, A. D. Mechanisms of hepatic phosphatidylcholine synthesis in the developing guinea pig: Contributions of acyl remodelling and of N-methylation of phosphatidylethanolamine. Biochem. J. 290, 67–73 (1993).

    Article  CAS  Google Scholar 

  5. Vance, D. E. & Ridgway, N. D. The methylation of phosphatidylethanolamine. Prog. Lipid Res. 27, 61–79 (1988).

    Article  CAS  Google Scholar 

  6. Aktas, M. et al. Phosphatidylcholine biosynthesis and its significance in bacteria interacting with eukaryotic cells. Eur. J. Cell Biol. 89, 888–894 (2010).

    Article  CAS  Google Scholar 

  7. Kent, C. Regulatory enzymes of phosphatidylcholine biosynthesis: A personal perspective. Biochim. Biophys. Acta 1733, 53–66 (2005).

    Article  CAS  Google Scholar 

  8. Vance, D. E., Li, Z. & Jacobs, R. L. Hepatic phosphatidylethanolamine N-methyltransferase, unexpected roles in animal biochemistry and physiology. J. Biol. Chem. 282, 33237–33241 (2007).

    Article  CAS  Google Scholar 

  9. Goldfine, H. Bacterial membranes and lipid packing theory. J. Lipid Res. 25, 1501–1507 (1984).

    CAS  Google Scholar 

  10. Peschel, A. et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor Mprf is based on modification of membrane lipids with L-lysine. J. Exp. Med. 193, 1067–1076 (2001).

    Article  CAS  Google Scholar 

  11. Hazen, S. L. & Chisolm, G. M. Oxidized phosphatidylcholines: Pattern recognition ligands for multiple pathways of the innate immune response. Proc. Natl Acad. Sci. USA 99, 12515–12517 (2002).

    Article  CAS  Google Scholar 

  12. Rao, M., Eichberg, M. R. & Oró, J. Synthesis of phosphatidylcholine under possible primitive earth conditions. J. Mol. Evol. 18, 196–202 (1982).

    Article  CAS  Google Scholar 

  13. Cundell, D. R., Gerard, N. P., Gerard, C., Idanpaan-Heikkila, I. & Tuomanen, E. I. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377, 435–438 (1995).

    Article  CAS  Google Scholar 

  14. Raetz, C. R. H. Molecular genetics of membrane phospholipid synthesis. Annu. Rev. Genet. 20, 253–295 (1986).

    Article  CAS  Google Scholar 

  15. Van Der Sanden, M. H. M., Houweling, M., Van Golde, L. M. G. & Vaanderager, A. B. Inhibition of phosphatidyl choline synthesis induces expression of the endoplasmic reticulum stress and apoptosis-related protein CCAAT/enhancer-binding protein-homologous protein (CHOP/GADD153). Biochem. J. 369, 643–650 (2003).

    Article  CAS  Google Scholar 

  16. Norris, V. & Raine, D. J. A fission–fusion origin for life. Orig. Life Evol. B 28, 523–537 (1998).

    Article  CAS  Google Scholar 

  17. Ring, A., Weiser, J. N. & Tuomanen, E. I. Pneumococcal trafficking across the blood–brain barrier. Molecular analysis of a novel bidirectional pathway. J. Clin. Invest. 102, 347–360 (1998).

    Article  CAS  Google Scholar 

  18. Prescott, S. M., Zimmerman, G. A. & McIntyre, T. M. Platelet-activating factor. J. Biol. Chem. 265, 17381–17384 (1990).

    CAS  Google Scholar 

  19. Prescott, S. M., McIntyre, T. M., Zimmerman, G. A. & Stafforini, D. M. Sol Sherry lecture in thrombosis molecular events in acute inflammation. Arterioscler. Thromb. Vasc. 22, 727–733 (2002).

    Article  CAS  Google Scholar 

  20. Papp, I., Dernedde, J., Enders, S. & Haag, R. Modular synthesis of multivalent glycoarchitectures and their unique selectin binding behavior. Chem. Commun. 5851–5853 (2008).

  21. Weinhart, M., Gröger, D., Enders, S., Dernedde, J. & Haag, R. Synthesis of dendritic polyglycerol anions and their efficiency toward L-selectin inhibition. Biomacromolecules 12, 2502–2511 (2011).

    Article  CAS  Google Scholar 

  22. Calderon, M., Quadir, M. A., Sharma, S. K. & Haag, R. Dendritic polyglycerols for biomedical applications. Adv. Mater. 22, 190–218 (2010).

    Article  CAS  Google Scholar 

  23. Wilms, D., Stiriba, S. E. & Frey, H. Hyperbranched polyglycerols: From the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Acc. Chem. Res. 43, 129–141 (2010).

    Article  CAS  Google Scholar 

  24. Kainthan, R. K., Janzen, J., Levin, E., Devine, D. V. & Brooks, D. E. Biocompatibility testing of branched and linear polyglycidol. Biomacromolecules 7, 703–709 (2006).

    Article  CAS  Google Scholar 

  25. Kainthan, R. K., Hester, S. R., Levin, E., Devine, D. V. & Brooks, D. E. In vitro biological evaluation of high molecular weight hyperbranched polyglycerols. Biomaterials 28, 4581–4590 (2007).

    Article  CAS  Google Scholar 

  26. Kainthan, R. K. & Brooks, D. E. In vivo biological evaluation of high molecular weight hyperbranched polyglycerols. Biomaterials 28, 4779–4787 (2007).

    Article  CAS  Google Scholar 

  27. Liu, Z., Janzen, J. & Brooks, D. E. Adsorption of amphiphilic hyperbranched polyglycerol derivatives onto human red blood cells. Biomaterials 31, 3364–3373 (2010).

    Article  CAS  Google Scholar 

  28. Kainthan, R. K., Muliawan, E. B., Hatzikiriakos, S. G. & Brooks, D. E. Synthesis, characterization, and viscoelastic properties of high molecular weight hyperbranched polyglycerols. Macromolecules 39, 7708–7717 (2006).

    Article  CAS  Google Scholar 

  29. Brooks, D. E. in Blood Cells, Rheology and Aging (ed. Platt, D.) 158–162 (Springer, 1988).

    Book  Google Scholar 

  30. Neu, B. & Meiselman, H. J. Depletion-mediated red blood cell aggregation in polymer solutions. Biophys. J. 83, 2482–2490 (2002).

    Article  CAS  Google Scholar 

  31. Boynard, M. & Leliere, J. C. Size determination of red blood cell aggregates induced by dextran using ultrasound backscattering phenomenon. Biorheology 27, 39–46 (1990).

    Article  CAS  Google Scholar 

  32. Chien, S. & Lang, L. A. Physicochemical basis and clinical implications of red cell aggregation. Clin. Hemorheol. Microcirc. 7, 71–91 (1987).

    Article  CAS  Google Scholar 

  33. Nash, G. B., Wenby, R. B., Sowemimo-Coker, S. O. & Meiselman, H. J. Influence of cellular properties on red cell aggregation. Clin. Hemorheol. Microcirc. 7, 93–108 (1987).

    Article  Google Scholar 

  34. Jackson, S. N. et al. Direct tissue analysis of phospholipids in rat brain using MALDI-TOFMS and MALDI-Ion Mobility-TOFMS. J. Am. Soc. Mass Spectrom. 16, 100–138 (2005).

    Article  Google Scholar 

  35. Kawaguchi, M. & Takahashi, A. Polymer adsorption at solid–liquid interfaces. Adv. Colloid Interface Sci. 37, 219–317 (1992).

    Article  CAS  Google Scholar 

  36. Szleifer, I. Protein adsorption on surfaces with grafted polymers: A theoretical approach. Biophys. J. 72, 595–612 (1997).

    Article  CAS  Google Scholar 

  37. Brooks, D. E., Haynes, C. A., Hritcu, D., Steels, B. M. & Müller, W. Size exclusion chromatography does not require pores. Proc. Natl Acad. Sci. USA 97, 7064–7067 (2000).

    Article  CAS  Google Scholar 

  38. Brooks, D. E., Greig, R. G. & Janzen, J. Mechanisms of Erythrocyte Aggregation: Erythrocyte Mechanisms and Blood Flow Ch. 6 (Liss, 1980).

    Google Scholar 

  39. Sheng, Q., Schulten, K. & Pidgeon, C. Molecular dynamic simulation of immobilized artificial membranes. J. Phys. Chem. 99, 11018–11027 (1995).

    Article  CAS  Google Scholar 

  40. Kainthan, R. K., Janzen, J., Kizhakkedathu, J. N., Devine, D. V. & Brooks, D. E. Hydrophobically derivatized hyperbranched polyglycerol as a human serum albumin substitute. Biomaterials 29, 1693–1704 (2008).

    Article  CAS  Google Scholar 

  41. Kizhakkedathu, J. N. et al. High molecular weight polyglycerol-based multivalent mannose conjugates. Biomacromolecules 11, 2567–2575 (2010).

    Article  CAS  Google Scholar 

  42. Connor, J., Pak, C. C. & Schroit, A. J. Exposure of phosphatidylserine in the outer leaflet of human red blood cells. J. Biol. Chem. 269, 2399–2404 (1994).

    CAS  Google Scholar 

  43. Yao, Z. M. & Vance, D. E. The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J. Biol. Chem. 263, 2998–3004 (1988).

    CAS  Google Scholar 

  44. Robinson, B. S., Yao, Z. M., Baisted, D. J. & Vance, D. E. Lysophosphatidylcholine metabolism and lipoprotein secretion by cultured rat hepatocytes deficient in choline. Biochem. J. 260, 207–214 (1989).

    Article  CAS  Google Scholar 

  45. Chien, S. Aggregation of red blood cells: An electrochemical and colloid chemical problem. Adv. Chem. 188, 3–38 (1980).

    Article  CAS  Google Scholar 

  46. Dembitzer, H. M., Oberhardt, B. J., Duffy, J. L. & Lalezari, P. Polybrene-induced red blood cell aggregation in vitro morphological aspects. Transfusion 12, 94–97 (1972).

    Article  CAS  Google Scholar 

  47. Van Oss, C. J. & Mohn, J. F. Scanning electron microscopy of red cell agglutination. Vox Sang. 19, 432 (1970).

    Article  CAS  Google Scholar 

  48. Fine, M. et al. Massive endocytosis driven by lipidic forces originating in the outer plasmalemmal monolayer: A new approach to membrane recycling and lipid domains. J. Gen. Physiol. 137, 137–154 (2011).

    Article  CAS  Google Scholar 

  49. Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    Article  CAS  Google Scholar 

  50. Mugabe, C. et al. Paclitaxel incorporated in hydrophobically derivatized hyperbranched polyglycerols for intravesical bladder cancer therapy. Br. J. Urol. 103, 978–986 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from Canadian Institutes of Health Research (CIHR), Canadian Blood Services (CBS), Canada Foundation for Innovation (CFI), and Michael Smith Foundation for Health Research (MSFHR) are gratefully acknowledged. The authors thank the Laboratory of Molecular Biophysics Macromolecular Hub at the University of British Columbia (UBC) Center for Blood Research for the use of their research facilities. These facilities are supported in part by grants from the Canada Foundation for Innovation and the Michael Smith Foundation for Health Research. J.N.K. acknowledges the New Investigator award from CIHR and CBS, as well as the Career Investigator Scholar award from MSFHR. The authors acknowledge Derrick Horne (UBC Bioimaging Facility) for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

X.Y., J.N.K. and D.E.B. conceived, designed and co-wrote the paper. X.Y., Z.L., I.C., S.H., W.C. and R.K.K performed the experiments. J.J. helped to analyse the data. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jayachandran N. Kizhakkedathu or Donald E. Brooks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2863 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Liu, Z., Janzen, J. et al. Polyvalent choline phosphate as a universal biomembrane adhesive. Nature Mater 11, 468–476 (2012). https://doi.org/10.1038/nmat3272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3272

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research