Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetic manipulation of self-assembled colloidal asters

Abstract

Self-assembled materials1,2,3,4 must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity1,5. Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-assembled dynamic asters.
Figure 2: Structure and hydrodynamic signature of asters.
Figure 3: Magnetic ordering of asters.
Figure 4: Controlled locomotion and gripper functionality of asters.
Figure 5: Collection, encaging, and transport of particles by a cluster of asters.

Similar content being viewed by others

References

  1. Whitesides, G. M & Grzybowski, B. A. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  Google Scholar 

  2. Mirkin, C., Letsinger, R. & Storhoff, J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  3. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 172–191 (2007).

    Article  Google Scholar 

  4. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  5. Glotzer, S. C. & Solomon, M. G. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  6. Li, F., Josephson, D. P. & Stein, A. Colloidal assembly: The road from particles to colloidal molecules and crystals. Angew. Chem. Int. Ed. 50, 360–388 (2011).

    Article  CAS  Google Scholar 

  7. Grzybowski, B. A., Stone, H. A. & Whitesides, G. M. Dynamic self-assembly of magnetized, millimeter-sized objects rotating at a liquid–air interface. Nature 405, 1033–1036 (2000).

    Article  CAS  Google Scholar 

  8. Sapozhnikov, M. V., Tolmachev, Y. V., Aranson, I. S. & Kwok, W-K. Dynamic self-assembly and patterns in electrostatically driven granular media. Phys. Rev. Lett. 90, 114301 (2003).

    Article  CAS  Google Scholar 

  9. Lowen, H. Colloidal dispersions in external fields: Recent developments. J. Phys. Condens. Matter 20, 404201 (2008).

    Article  Google Scholar 

  10. Tierno, P., Fischer, T. M., Jouansen, T. & Sagues, F. Colloidal assembly on magnetically vibrated stripes. Phys. Rev. Lett. 100, 148304 (2008).

    Article  Google Scholar 

  11. Snezhko, A., Aranson, I. S. & Kwok, W-K. Dynamic self-assembly of magnetic particles on the fluid interface: Surface-wave-mediated effective magnetic exchange. Phys. Rev. E 73, 041306 (2006).

    Article  CAS  Google Scholar 

  12. Nedelec, F. J., Surrey, T., Maggs, A. C. & Leibler, S. Self-organization of microtubules and motors. Nature 389, 305–308 (1997).

    Article  CAS  Google Scholar 

  13. Leunissen, M. E., Vutukuri, H. R. & van Blaaderen, A. Directed colloidal self-assembly with biaxial electric fields. Adv. Mater. 21, 3116–2120 (2009).

    Article  CAS  Google Scholar 

  14. Snezhko, A., Aranson, I. S. & Kwok, W-K. Surface wave assisted self-assembly of multidomain magnetic structures. Phys. Rev. Lett. 96, 078701 (2006).

    Article  CAS  Google Scholar 

  15. Martin, J. E., Venturini, E., Gulley, G. L. & Williamson, J. Using triaxial magnetic fields to create high susceptibility particle composites. Phys. Rev. E 69, 021508 (2004).

    Article  Google Scholar 

  16. Hermanson, K. D., Lumsdon, S. O., Williams, J. P., Kaler, E. W. & Velev, O. D. Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 294, 1082–1086 (2001).

    Article  CAS  Google Scholar 

  17. Sacanna, S., Irvine, W. T. M., Chaikin, P. M. & Pine, D. J. Lock and key colloids. Nature 464, 575–578 (2010).

    Article  CAS  Google Scholar 

  18. Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).

    Article  CAS  Google Scholar 

  19. Erb, R. M., Son, H. S., Samanta, B., Rotello, V. M. & Yellen, B. B. Magnetic assembly of colloidal superstructures with multipole symmetry. Nature 457, 999–1002 (2009).

    Article  CAS  Google Scholar 

  20. Zerrouki, D., Baudry, J., Pine, D., Chaikin, P. & Bibette, J. Chiral colloidal clusters. Nature 455, 380–382 (2008).

    Article  CAS  Google Scholar 

  21. Lu, P. J., Zaccarelli, E., Ciulla, F., Schofield, A. B., Sciortino, F. & Weitz, D. A. Gelation of particles with short-range attraction. Nature 453, 499–503 (2008).

    Article  CAS  Google Scholar 

  22. Leunissen, M. E. et al. Switchable self-protected attractions in DNA-functionalized colloids. Nature Mater. 8, 590–595 (2009).

    Article  CAS  Google Scholar 

  23. Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 28, 1135–1138 (2010).

    Article  Google Scholar 

  24. Dreyfus, R. et al. Microscopic artificial swimmers. Nature 437, 862–865 (2005).

    Article  CAS  Google Scholar 

  25. Lamb, H. Hydrodynamics 6th edn (Dover Publications, 1993).

    Google Scholar 

  26. Belkin, M., Snezhko, A., Aranson, I. S. & Kwok, W-K. Driven magnetic particles on a fluid surface: Pattern assisted surface flows. Phys. Rev. Lett. 99, 158301 (2007).

    Article  CAS  Google Scholar 

  27. Snezhko, A., Belkin, M., Aranson, I. S. & Kwok, W-K. Self-assembled magnetic surface swimmers. Phys. Rev. Lett. 102, 118103 (2009).

    Article  CAS  Google Scholar 

  28. Ilievski, F., Mazzeo, A. D., Shepherd, R. F., Chen, X. & Whitesides, G. M. Soft robotics for chemists. Angew. Chem. Int. Ed. 50, 1890–1895 (2011).

    Article  CAS  Google Scholar 

  29. Brown, E. et al. Universal robotic gripper based on the jamming of granular material. Proc. Natl Acad. Sci. USA 107, 18809–18814 (2010).

    Article  CAS  Google Scholar 

  30. Adrian, R. J. Twenty years of particle image velocimetry. Exp. Fluids 39, 159–169 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Swaminathan for careful reading of the manuscript and useful comments. The research was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

A.S. and I.S.A. designed and carried out the experiments. A.S. analysed experimental data. Both authors wrote the manuscript.

Corresponding author

Correspondence to Alexey Snezhko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 588 kb)

Supplementary Information

Supplementary Movie (MOV 566 kb)

Supplementary Information

Supplementary Movie (MOV 874 kb)

Supplementary Information

Supplementary Movie (MOV 1929 kb)

Supplementary Information

Supplementary Movie (MOV 6998 kb)

Supplementary Information

Supplementary Movie (MOV 3116 kb)

Supplementary Information

Supplementary Movie (MOV 2226 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snezhko, A., Aranson, I. Magnetic manipulation of self-assembled colloidal asters. Nature Mater 10, 698–703 (2011). https://doi.org/10.1038/nmat3083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3083

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing