Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition

Abstract

The strong interest in graphene has motivated the scalable production of high-quality graphene and graphene devices. As the large-scale graphene films synthesized so far are typically polycrystalline, it is important to characterize and control grain boundaries, generally believed to degrade graphene quality. Here we study single-crystal graphene grains synthesized by ambient chemical vapour deposition on polycrystalline Cu, and show how individual boundaries between coalescing grains affect graphene’s electronic properties. The graphene grains show no definite epitaxial relationship with the Cu substrate, and can cross Cu grain boundaries. The edges of these grains are found to be predominantly parallel to zigzag directions. We show that grain boundaries give a significant Raman ‘D’ peak, impede electrical transport, and induce prominent weak localization indicative of intervalley scattering in graphene. Finally, we demonstrate an approach using pre-patterned growth seeds to control graphene nucleation, opening a route towards scalable fabrication of single-crystal graphene devices without grain boundaries.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphene grains grown on Cu substrates.
Figure 2: Transmission electron microscopy and electron diffraction from graphene grains.
Figure 3: Scanning tunnelling microscopy of a single-crystal graphene grain on Cu.
Figure 4: Spectroscopic Raman mapping of graphene grains and grain boundaries.
Figure 5: Electronic transport cross a single grain boundary.
Figure 6: Seeded growth of graphene grains.

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Google Scholar 

  2. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  3. Geim, A. K. Graphene: Status and prospects. Science 324, 1530–1534 (2009).

    Article  CAS  Google Scholar 

  4. de Heer, W. A. et al. Epitaxial graphene. Solid State Commun. 143, 92–100 (2007).

    Article  CAS  Google Scholar 

  5. Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Mater. 8, 203–207 (2009).

    Article  CAS  Google Scholar 

  6. Yu, Q. K. et al. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 113103 (2008).

    Article  Google Scholar 

  7. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009).

    Article  CAS  Google Scholar 

  8. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    Article  CAS  Google Scholar 

  9. Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  10. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

    Article  CAS  Google Scholar 

  11. Cao, H. L. et al. Electronic transport in chemical vapour deposited graphene synthesized on Cu: Quantum Hall effect and weak localization. Appl. Phys. Lett. 96, 122106 (2010).

    Article  Google Scholar 

  12. Liu, Y. & Yakobson, B. I. Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett. 10, 2178–2183 (2010).

    Article  CAS  Google Scholar 

  13. Li, X. S. et al. Graphene films with large domain size by a two-step chemical vapour deposition process. Nano Lett. 10, 4328–4334 (2010).

    Article  CAS  Google Scholar 

  14. Yazyev, O. V. & Louie, S. G. Electronic transport in polycrystalline graphene. Nature Mater. 9, 806–809 (2010).

    Article  CAS  Google Scholar 

  15. Huang, P. Y. et al. Imaging grains and grain boundaries in single-layer graphene: An atomic patchwork quilt. Nature 469, 389–392 (2011).

    Article  CAS  Google Scholar 

  16. Kim, K. et al. Grain boundary mapping in polycrystalline graphene. ACS Nano 5, 2142–2146 (2011).

    Article  CAS  Google Scholar 

  17. An, J. et al. Domain (grain) boundaries and evidence of twin like structures in CVD grown graphene. ACS Nano doi:10.1021/nn103102a (2011).

  18. Grantab, R., Shenoy, V. B. & Ruoff, R. S. Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330, 946–948 (2010).

    Article  CAS  Google Scholar 

  19. Plummer, J. D., Deal, M. D. & Griffin, P. B. Silicon VLSI Technology (Prentice Hall, 2000).

    Google Scholar 

  20. Wu, W. et al. Wafer-scale synthesis of graphene by chemical vapour deposition and its application in hydrogen sensing. Sens. Actuat. B 150, 296–300 (2010).

    Article  CAS  Google Scholar 

  21. Li, X. S., Cai, W. W., Colombo, L. & Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labelling. Nano Lett. 9, 4268–4272 (2009).

    Article  CAS  Google Scholar 

  22. Li, X. et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011).

    Article  CAS  Google Scholar 

  23. Gao, L., Guest, J. R. & Guisinger, N. P. Epitaxial graphene on Cu(111). Nano Lett. 10, 3512–3516 (2010).

    Article  CAS  Google Scholar 

  24. Vanin, M. et al. Graphene on metals: A van der Waals density functional study. Phys. Rev. B 81, 081408 (2010).

    Article  Google Scholar 

  25. Girit, C. O. et al. Graphene at the edge: Stability and dynamics. Science 323, 1705–1708 (2009).

    Article  CAS  Google Scholar 

  26. Jia, X. T. et al. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323, 1701–1705 (2009).

    Article  CAS  Google Scholar 

  27. Nemes-Incze, P., Magda, G., Kamaras, K. & Biro, L. P. Crystallographically selective nanopatterning of graphene on SiO2 . Nano Res. 3, 110–116 (2010).

    Article  CAS  Google Scholar 

  28. Rutter, G. M., Guisinger, N. P., Crain, J. N., First, P. N. & Stroscio, J. A. Edge structure of epitaxial graphene islands. Phys. Rev. B 81, 245408 (2010).

    Article  Google Scholar 

  29. Okada, S. Energetics of nanoscale graphene ribbons: Edge geometries and electronic structures. Phys. Rev. B 77, 041408 (2008).

    Article  Google Scholar 

  30. Nakajima, T. & Shintani, K. Molecular dynamics study of energetics of graphene flakes. J. Appl. Phys. 106, 114305 (2009).

    Article  Google Scholar 

  31. Gan, C. K. & Srolovitz, D. J. First-principles study of graphene edge properties and flake shapes. Phys. Rev. B 81, 125445 (2010).

    Article  Google Scholar 

  32. Neubeck, S. et al. Direct determination of the crystallographic orientation of graphene edges by atomic resolution imaging. Appl. Phys. Lett. 97, 053110 (2010).

    Article  Google Scholar 

  33. Coraux, J. et al. Growth of graphene on Ir(111). New J. Phys. 11, 023006 (2009).

    Article  Google Scholar 

  34. Eom, D. et al. Structure and electronic properties of graphene nanoislands on Co(0001). Nano Lett. 9, 2844–2848 (2009).

    Article  CAS  Google Scholar 

  35. Yamamoto, M., Obata, S. & Saiki, K. Structure and properties of chemically prepared nanographene islands characterized by scanning tunnelling microscopy. Surf. Interface Anal. 42, 1637–1641 (2010).

    Article  CAS  Google Scholar 

  36. Son, Y. W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    Article  CAS  Google Scholar 

  37. Huang, M. Y. et al. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl Acad. Sci. USA 106, 7304–7308 (2009).

    Article  CAS  Google Scholar 

  38. Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009).

    Article  Google Scholar 

  39. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  40. Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007).

    Article  CAS  Google Scholar 

  41. Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009).

    Article  CAS  Google Scholar 

  42. Beenakker, C. W. J. & van Houten, H. Quantum Transport in Semiconductor Nanostructures Vol. 44 (Academic, 1991).

    Google Scholar 

  43. McCann, E. et al. Weak-localization magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett. 97, 146805 (2006).

    Article  CAS  Google Scholar 

  44. Morozov, S. V. et al. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 97, 016801 (2006).

    Article  CAS  Google Scholar 

  45. Tikhonenko, F. V., Horsell, D. W., Gorbachev, R. V. & Savchenko, A. K. Weak localization in graphene flakes. Phys. Rev. Lett. 100, 056802 (2008).

    Article  CAS  Google Scholar 

  46. Bhaviripudi, S., Jia, X. T., Dresselhaus, M. S. & Kong, J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 10, 4128–4133 (2010).

    Article  CAS  Google Scholar 

  47. Lee, S., Lee, K. & Zhong, Z. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett. 10, 4702–4707 (2010).

    Article  CAS  Google Scholar 

  48. http://pacific.mpi-cbg.de/wiki/index.php/Fiji.

  49. CLAHE plugin, http://pacific.mpi-cbg.de/cgi-bin/gitweb.cgi?p=mpicbg.git;a=tree;f=mpicbg/ij/clahe.

  50. Gackenheimer, C., Cayon, L. & Reifenberger, R. Analysis of scanning probe microscope images using wavelets. Ultramicroscopy 106, 389–397 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Q.Y. acknowledges support from NSF and UHCAM. N.P.G. acknowledges support from DOE SISGR. E.A.S. acknowledges support from DOE BES. J.B. acknowledges support from TcSUH and the Welch Foundation. Y.P.C. acknowledges support from NSF, DTRA, DHS, IBM, the Miller Family Endowment and Midwest Institute for Nanoelectronics Discovery (MIND). STM measurements were carried out at Argonne National Laboratory under the support of the DOE user program.

Author information

Authors and Affiliations

Authors

Contributions

W.W., R.C. and J.T. are equally contributing second authors. Q.Y. led the synthesis and Y.P.C. led the characterization efforts. Q.Y., W.W., Z.L. and Z.S. synthesized the graphene samples and performed SEM. R.C. and E.A.S. performed the TEM. J.T., H.C. and N.P.G. performed the STM. L.A.J. performed the Raman measurements. L.A.J. and H.C. fabricated the devices and performed electronic transport measurements. Q.Y., L.A.J., R.C., J.T., E.A.S. and Y.P.C. wrote the paper and all authors contributed to the discussions.

Corresponding authors

Correspondence to Qingkai Yu or Yong P. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3491 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Q., Jauregui, L., Wu, W. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Mater 10, 443–449 (2011). https://doi.org/10.1038/nmat3010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3010

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing