Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-assembly of highly ordered conjugated polymer aggregates with long-range energy transfer

Abstract

Applications of conjugated polymers (CP) in organic electronic devices such as light-emitting diodes and solar cells depend critically on the nature of electronic energy transport in these materials1,2,3,4,5. Single-molecule spectroscopy has revealed their fundamental properties with molecular detail6,7,8,9,10,11,12,13,14, and recent reports suggest that energy transport in single CP chains can extend over extraordinarily long distances of up to 75 nm (refs 13, 15, 16). An important question arises as to whether these characteristics are sustained when CP chains agglomerate into a neat solid2. Here, we demonstrate that the electronic energy transport in aggregates composed of tens of polymer chains takes place on a similar distance scale as that in single chains. A recently developed molecular-level understanding of solvent vapour annealing has allowed us to develop a technique to control the CP agglomeration process17. Aggregates with volumes of at least 45,000 nm3 (molecular weight ≈ 21 MDa) maintain a highly ordered morphology and show pronounced fluorescence blinking behaviour, indicative of substantially long-range energy transport. Our findings provide a new lens through which the ordering of single CP chains and the evolution of their morphological and optoelectronic properties can be observed, which will ultimately enable the rational design of improved CP-based devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Controlled aggregation in highly diluted thin CP/polymer films by SVA.
Figure 2: Wide-field fluorescence images of highly diluted MEH–PPV/PMMA thin films before and after undergoing different processing conditions.
Figure 3: Bar graph of the number of aggregates (blue) per imaging area and their Imean (grey) for six different SVA conditions.
Figure 4: Experimental histograms of M obtained by fluorescence excitation polarization spectroscopy.
Figure 5: Representative single-particle fluorescence transients and quenching depth histograms.

Similar content being viewed by others

References

  1. Shaheen, S. E. et al. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841–843 (2001).

    Article  CAS  Google Scholar 

  2. Bardeen, C. Exciton quenching and migration in single conjugated polymers. Science 331, 544–545 (2011).

    Article  CAS  Google Scholar 

  3. Wang, H. L., MacDiarmid, A. G., Wang, Y. Z., Gebler, D. D. & Epstein, A. J. Application of polyaniline (emeraldine base, EB) in polymer light-emitting devices. Synth. Met. 78, 33–37 (1996).

    Article  CAS  Google Scholar 

  4. Hide, F., DiazGarcia, M. A., Schwartz, B. J. & Heeger, A. J. New developments in the photonic applications of conjugated polymers. Acc. Chem. Res. 30, 430–436 (1997).

    Article  CAS  Google Scholar 

  5. Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    Article  CAS  Google Scholar 

  6. VandenBout, D. A. et al. Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules. Science 277, 1074–1077 (1997).

    Article  CAS  Google Scholar 

  7. Yu, J., Hu, D. H. & Barbara, P. F. Unmasking electronic energy transfer of conjugated polymers by suppression of O2 quenching. Science 289, 1327–1330 (2000).

    Article  CAS  Google Scholar 

  8. Hu, D. H. et al. Collapse of stiff conjugated polymers with chemical defects into ordered, cylindrical conformations. Nature 405, 1030–1033 (2000).

    Article  CAS  Google Scholar 

  9. Barbara, P. F., Gesquiere, A. J., Park, S. J. & Lee, Y. J. Single-molecule spectroscopy of conjugated polymers. Acc. Chem. Res. 38, 602–610 (2005).

    Article  CAS  Google Scholar 

  10. Muls, B. et al. Direct measurement of the end-to-end distance of individual polyfluorene polymer chains. ChemPhysChem 6, 2286–2294 (2005).

    Article  CAS  Google Scholar 

  11. Laquai, F., Park, Y. S., Kim, J. J. & Basche, T. Excitation energy transfer in organic materials: From fundamentals to optoelectronic devices. Macromol. Rapid Commun. 30, 1203–1231 (2009).

    Article  CAS  Google Scholar 

  12. Woll, D. et al. Polymers and single molecule fluorescence spectroscopy, what can we learn? Chem. Soc. Rev. 38, 313–328 (2009).

    Article  CAS  Google Scholar 

  13. Adachi, T. et al. Highly ordered single conjugated polymer chain rod morphologies. J. Phys. Chem. C 114, 20896–20902 (2010).

    Article  CAS  Google Scholar 

  14. Lupton, J. M. Single-molecule spectroscopy for plastic electronics: Materials analysis from the bottom-up. Adv. Mater. 22, 1689–1721 (2010).

    Article  CAS  Google Scholar 

  15. Bolinger, J. C., Traub, M. C., Adachi, T. & Barbara, P. F. Ultralong-range polaron-induced quenching of excitons in isolated conjugated polymers. Science 331, 565–567 (2011).

    Article  CAS  Google Scholar 

  16. Habuchi, S., Onda, S. & Vacha, M. Mapping the emitting sites within a single conjugated polymer molecule. Chem. Commun. 4868–4870 (2009).

  17. Vogelsang, J., Brazard, J., Adachi, T., Bolinger, J. C. & Barbara, P. F. Watching the annealing process one polymer chain at a time. Angew. Chem. Int. Ed. 50, 2257–2261 (2011).

    Article  CAS  Google Scholar 

  18. Lifschitz, I. M. & Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961).

    Article  Google Scholar 

  19. Brandrup, J., Immergut, E. H., Grulke, E. A., Abe, A. & Bloch, D. R. Polymer Handbook 4th edn (Wiley, 1999).

    Google Scholar 

  20. Traiphol, R., Sanguansat, P., Srikhirin, T., Kerdcharoen, T. & Osotchan, T. Spectroscopic study of photophysical change in collapsed coils of conjugated polymers: Effects of solvent and temperature. Macromolecules 39, 1165–1172 (2006).

    Article  CAS  Google Scholar 

  21. Peng, J. et al. Morphologies in solvent-annealed thin films of symmetric diblock copolymer. J. Chem. Phys. 125, 064702 (2006).

    Article  Google Scholar 

  22. Grey, J. K., Kim, D. Y., Norris, B. C., Miller, W. L. & Barbara, P. F. Size-dependent spectroscopic properties of conjugated polymer nanoparticles. J. Phys. Chem. B 110, 25568–25572 (2006).

    Article  CAS  Google Scholar 

  23. Szymanski, C. et al. Single molecule nanoparticles of the conjugated polymer MEH–PPV, preparation and characterization by near-field scanning optical microscopy. J. Phys. Chem. B 109, 8543–8546 (2005).

    Article  CAS  Google Scholar 

  24. Markov, D. E., Amsterdam, E., Blom, P. W. M., Sieval, A. B. & Hummelen, J. C. Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer. J. Phys. Chem. A 109, 5266–5274 (2005).

    Article  CAS  Google Scholar 

  25. Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272–1295 (2007).

    Article  CAS  Google Scholar 

  26. van der Veen, M. H., de Boer, B., Stalmach, U., van de Wetering, K. I. & Hadziioannou, G. Donor–acceptor diblock copolymers based on PPV and C60: Synthesis, thermal properties, and morphology. Macromolecules 37, 3673–3684 (2004).

    Article  CAS  Google Scholar 

  27. Lindner, S. M., Huttner, S., Chiche, A., Thelakkat, M. & Krausch, G. Charge separation at self-assembled nanostructured bulk interface in block copolymers. Angew. Chem. Int. Ed. 45, 3364–3368 (2006).

    Article  CAS  Google Scholar 

  28. Zhang, Q. L., Cirpan, A., Russell, T. P. & Emrick, T. Donor–acceptor poly(thiophene-block-perylene diimide) copolymers: Synthesis and solar cell fabrication. Macromolecules 42, 1079–1082 (2009).

    Article  CAS  Google Scholar 

  29. Yang, C., Lee, J. K., Heeger, A. J. & Wudl, F. Well-defined donor–acceptor rod-coil diblock copolymers based on P3HT containing C60: The morphology and role as a surfactant in bulk-heterojunction solar cells. J. Mater. Chem. 19, 5416–5423 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported as part of the program ‘Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)’, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001091. J.V. thanks the German Research Foundation (DFG) for a fellowship. We thank G. Lakhwani for stimulating discussions and O. Fabian for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.V. performed and analysed experiments. T.A. analysed experiments and performed simulations. J.B. prepared samples and performed experiments. J.V., D.A.V.B. and P.F.B. designed experiments. J.V., T.A. and D.A.V.B. wrote the paper.

Corresponding authors

Correspondence to Jan Vogelsang or David A. Vanden Bout.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 701 kb)

Supplementary Information

Supplementary Movie (AVI 7048 kb)

Supplementary Information

Supplementary Movie (AVI 5753 kb)

Supplementary Information

Supplementary Movie (AVI 5863 kb)

Supplementary Information

Supplementary Movie (AVI 6546 kb)

Supplementary Information

Supplementary Movie (AVI 6887 kb)

Supplementary Information

Supplementary Movie (AVI 7646 kb)

Supplementary Information

Supplementary Movie (AVI 8259 kb)

Supplementary Information

Supplementary Movie (AVI 5984 kb)

Supplementary Information

Supplementary Movie (AVI 6871 kb)

Supplementary Information

Supplementary Movie (AVI 7539 kb)

Supplementary Information

Supplementary Movie (AVI 9542 kb)

Supplementary Information

Supplementary Movie (AVI 8944 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogelsang, J., Adachi, T., Brazard, J. et al. Self-assembly of highly ordered conjugated polymer aggregates with long-range energy transfer. Nature Mater 10, 942–946 (2011). https://doi.org/10.1038/nmat3127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing