Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Getting a grip on things: how do communities of bacterial symbionts become established in our intestine?

Abstract

The gut contains our largest collection of resident microorganisms. One obvious question is how microbial communities establish and maintain themselves within a perfused intestine. The answers, which may come in part from observations made by environmental engineers and glycobiologists, have important implications for immunologists who wish to understand how indigenous microbial communities are accommodated. Here we propose that the mucus gel layer overlying the intestinal epithelium is a key contributor to the structural and functional stability of this microbiota and its tolerance by the host.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Engineered bioreactors provide clues as to how microbial communities are maintained.
Figure 2: View of the distal small intestine of a mouse by scanning electron microscopy.
Figure 3: Proposed mechanism for microbial retention in the gut.

References

  1. Savage, D.C. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31, 107–133 (1977).

    Article  CAS  Google Scholar 

  2. Hooper, L.V., Midtvedt, T. & Gordon, J.I. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22, 283–307 (2002).

    Article  CAS  Google Scholar 

  3. Zoetendal, E.G., Akkermans, A.D., Akkermans-van Vliet, W.M., de Visser, J.A.G.M. & de Vos, W.M. The host genotype affects the bacterial community in the human gastronintestinal tract. Microb. Eco. Health Dis. 13, 129–134 (2001).

    Google Scholar 

  4. Hayashi, H., Sakamoto, M. & Benno, Y. Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol. Immunol. 46, 535–548 (2002).

    Article  CAS  Google Scholar 

  5. Eckburg, P.B., Lepp, P.W. & Relman, D.A. Archaea and their potential role in human disease. Infect. Immun. 71, 591–596 (2003).

    Article  CAS  Google Scholar 

  6. Breitbart, M. et al. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185, 6220–6223 (2003).

    Article  CAS  Google Scholar 

  7. Stahl, D.A. & Tiedje, J. Microbial ecology and genomics: a crossroads of opportunity, critical issues colloquia. Am. Soc. Microbiol. (Washington, DC, 2002).

  8. Buckley, M.R. Microbial communities: from life apart to life together, critical issues colloquia. Am. Soc. Microbiol. (Washington, DC, 2003).

  9. Suau, A. et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65, 4799–4807 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu, J. & Gordon, J.I. Inaugural article: honor thy symbionts. Proc. Natl. Acad. Sci. USA 100, 10452–10459 (2003).

    Article  CAS  Google Scholar 

  11. Venter, J.C. et al. Environmental genome shotgun sequencing of the sargasso sea. Science advance online publication, 4 March 2004 (doi:10.1126/science.1093857).

  12. Bouma, G. & Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol. 3, 521–533 (2003).

    Article  CAS  Google Scholar 

  13. Schembri, M.A., Kjaergaard, K. & Klemm, P. Global gene expression in Escherichia coli biofilms. Mol. Microbiol. 48, 253–267 (2003).

    Article  CAS  Google Scholar 

  14. Beloin, C. et al. Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol. Microbiol. 51, 659–674 (2004).

    Article  CAS  Google Scholar 

  15. Jensen, E.T., Kharazmi, A., Hoiby, N. & Costerton, J.W. Some bacterial parameters influencing the neutrophil oxidative burst response to Pseudomonas aeruginosa biofilms. APMIS 100, 727–733 (1992).

    Article  CAS  Google Scholar 

  16. Jensen, E.T. et al. Complement activation by Pseudomonas aeruginosa biofilms. Microb. Pathog. 15, 377–388 (1993).

    Article  CAS  Google Scholar 

  17. Meluleni, G.J., Grout, M., Evans, D.J. & Pier, G.B. Mucoid Pseudomonas aeruginosa growing in a biofilm in vitro are killed by opsonic antibodies to the mucoid exopolysaccharide capsule but not by antibodies produced during chronic lung infection in cystic fibrosis patients. J. Immunol. 155, 2029–2038 (1995).

    CAS  PubMed  Google Scholar 

  18. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).

    Article  CAS  Google Scholar 

  19. Hooper, L.V., Stappenbeck, T.S., Hong, C.V. & Gordon, J.I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat. Immunol. 4, 269–273 (2003).

    Article  CAS  Google Scholar 

  20. Kelly, D. et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat. Immunol. 5, 104–112 (2004).

    Article  CAS  Google Scholar 

  21. Suzuki, K. et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl. Acad. Sci. USA 101, 1981–1986 (2004).

    Article  CAS  Google Scholar 

  22. Fagarasan, S. et al. In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413, 639–643 (2001).

    Article  CAS  Google Scholar 

  23. Macpherson, A.J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    Article  CAS  Google Scholar 

  24. Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003).

    Article  CAS  Google Scholar 

  25. Shroff, K.E., Meslin, K. & Cebra, J.J. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect. Immun. 63, 3904–3913 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bollinger, R.R. et al. Human secretory immunoglobulin A may contribute to biofilm formation in the gut. Immunology 109, 580–587 (2003).

    Article  CAS  Google Scholar 

  27. Sarti, A., Vieira, L.G., Foresti, E. & Zaiat, M. Influence of the liquid-phase mass transfer on the performance of a packed-bed bioreactor for wastewater treatment. Bioresour. Technol. 78, 231–238 (2001).

    Article  CAS  Google Scholar 

  28. Rittmann, B.E. & McCarty, P.L. Environmental Biotechnology (McGraw Hill, Boston, 2000).

    Google Scholar 

  29. Molly, K., Vande, Woestyne, M. & Verstraete, W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotechnol. 39, 254–258 (1993).

    Article  CAS  Google Scholar 

  30. De Boever, P., Deplancke, B. & Verstraete, W. Fermentation by gut microbiota cultured in a simulator of the human intestinal microbial ecosystem is improved by supplementing a soygerm powder. J. Nutr. 130, 2599–2606 (2000).

    Article  CAS  Google Scholar 

  31. Lettinga, G., Van Velsen, A., Hobma, S. & Zeeuw, W. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotech. Bioeng. 22, 699–734 (1980).

    Article  CAS  Google Scholar 

  32. Angenent, L., Sung, S. & Raskin, L. Formation of granules and Methanosaeta fibres in an anaerobic migrating blanket reactor (AMBR). Environ. Microbiol. 6, 315–322 (2004).

    Article  CAS  Google Scholar 

  33. Matsuo, K., Ota, H., Akamatsu, T., Sugiyama, A. & Katsuyama, T. Histochemistry of the surface mucous gel layer of the human colon. Gut 40, 782–789 (1997).

    Article  CAS  Google Scholar 

  34. Robbe, C. et al. Evidence of regio-specific glycosylation in human intestinal mucins: presence of an acidic gradient along the intestinal tract. J. Biol. Chem. 278, 46337–46348 (2003).

    Article  CAS  Google Scholar 

  35. Hooper, L.V., Xu, J., Falk, P.G., Midtvedt, T. & Gordon, J.I. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl. Acad. Sci. USA 96, 9833–9838 (1999).

    Article  CAS  Google Scholar 

  36. Akiyama, Y., Nagahara, N., Kashihara, T., Hirai, S. & Toguchi, H. In vitro and in vivo evaluation of mucoadhesive microspheres prepared for the gastrointestinal tract using polyglycerol esters of fatty acids and a poly(acrylic acid) derivative. Pharm. Res. 12, 397–405 (1995).

    Article  CAS  Google Scholar 

  37. Nyholm, S.V. & McFall-Ngai, M.J. Dominance of Vibrio fischeri in secreted mucus outside the light organ of Euprymna scolopes: the first site of symbiont specificity. Appl. Environ. Microbiol. 69, 3932–3937 (2003).

    Article  CAS  Google Scholar 

  38. Xu, J. et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–2076 (2003).

    Article  CAS  Google Scholar 

  39. Chang, D.E. et al. Carbon nutrition of Escherichia coli in the mouse intestine. Proc. Natl. Acad. Sci. USA 101 7427–7432 (2004).

    Article  CAS  Google Scholar 

  40. Salyers, A.A., Pajeau, M. & McCarthy, R.E. Importance of mucopolysaccharides as substrates for Bacteroides thetaiotaomicron growing in intestinal tracts of exgermfree mice. Appl. Environ. Microbiol. 54, 1970–1976 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hwa, V. & Salyers, A.A. Analysis of two chondroitin sulfate utilization mutants of Bacteroides thetaiotaomicron that differ in their abilities to compete with the wild type in the gastrointestinal tracts of germfree mice. Appl. Environ. Microbiol. 58, 869–876 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Moller, S. et al. In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl. Environ. Microbiol. 64, 721–732 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Itoh, H., Beck, P.L., Inoue, N., Xavier, R. & Podolsky, D.K. A paradoxical reduction in susceptibility to colonic injury upon targeted transgenic ablation of goblet cells. J. Clin. Invest. 104, 1539–1547 (1999).

    Article  CAS  Google Scholar 

  44. Schreiber, S., Stuben, M., Josenhans, C., Scheid, P. & Suerbaum, S. In vivo distribution of Helicobacter felis in the gastric mucus of the mouse: experimental method and results. Infect. Immun. 67, 5151–5156 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Orphan, V.J., House, C.H., Hinrichs, K.U., McKeegan, K.D. & DeLong, E.F. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 484–487 (2001).

    Article  CAS  Google Scholar 

  46. Krinos, C.M. et al. Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature 414, 555–558 (2001).

    Article  CAS  Google Scholar 

  47. Coyne, M.J., Weinacht, K.G., Krinos, C.M. & Comstock, L.E. Mpi recombinase globally modulates the surface architecture of a human commensal bacterium. Proc. Natl. Acad. Sci. USA 100, 10446–10451 (2003).

    Article  CAS  Google Scholar 

  48. Macfarlane, S., McBain, A.J. & Macfarlane, G.T. Consequences of biofilm and sessile growth in the large intestine. Adv. Dent. Res. 11, 59–68 (1997).

    Article  CAS  Google Scholar 

  49. Probert, H.M. & Gibson, G.R. Bacterial biofilms in the human gastrointestinal tract. Curr. Issues Intest. Microbiol. 3, 23–27 (2002).

    CAS  PubMed  Google Scholar 

  50. Mahan, M.J., Slauch, J.M. & Mekalanos, J.J. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259, 686–688 (1993).

    Article  CAS  Google Scholar 

  51. Walter, J. et al. Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Appl. Environ. Microbiol. 69, 2044–2051 (2003).

    Article  CAS  Google Scholar 

  52. Hensel, M. et al. Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400–403 (1995).

    Article  CAS  Google Scholar 

  53. Lee, Y.K., Ho, P.S., Low, C.S., Arvilommi, H. & Salminen, S. Permanent colonization by Lactobacillus casei is hindered by the low rate of cell division in mouse gut. Appl. Environ. Microbiol. 70, 670–674 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported in part by a grant from the National Institutes of Health (DK30292).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey I Gordon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonnenburg, J., Angenent, L. & Gordon, J. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine?. Nat Immunol 5, 569–573 (2004). https://doi.org/10.1038/ni1079

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1079

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing