A new synthesis for antibody-mediated immunity

Journal name:
Nature Immunology
Volume:
13,
Pages:
21–28
Year published:
DOI:
doi:10.1038/ni.2184
Published online

Abstract

The view that immunoglobulins function largely by potentiating neutralization, cytotoxicity or phagocytosis is being replaced by a new synthesis whereby antibodies participate in all aspects of the immune response, from protecting the host at the earliest time of encounter with a microbe to later challenges. Perhaps the most transformative concept is that immunoglobulins manifest emergent properties, from their structure and function as individual molecules to their interactions with microbial targets and the host immune system. Given that emergent properties are neither reducible to first principles nor predictable, there is a need for new conceptual approaches for understanding antibody function and mechanisms of antibody immunity.

References

  1. Jerne, N.K. Towards a network theory of the immune system. Ann. Immunol. (Paris) 125C, 373389 (1974).
  2. Hébert, J., Bernier, D., Boutin, Y., Jobin, M. & Mourad, W. Generation of anti-idiotypic and anti-anti-idiotypic monoclonal antibodies in the same fusion. Support of Jerne's Network Theory. J. Immunol. 144, 42564261 (1990).
  3. Silverstein, A.M. History of immunology. Cellular versus humoral immunity: determinants and consequences of an epic 19th century battle. Cell. Immunol. 48, 208221 (1979).
  4. Glatman-Freedman, A. & Casadevall, A. Serum therapy for tuberculosis revisited: a reappraisal of the role of antibody-mediated immunity against Mycobacterium tuberculosis. Clin. Microbiol. Rev. 11, 514532 (1998).
  5. Casadevall, A. Antibody-mediated immunity against intracellular pathogens: two-dimensional thinking comes full circle. Infect. Immun. 71, 42254228 (2003).
  6. Teitelbaum, R. et al. A monoclonal antibody recognizing a surface antigen of Mycobacterium tuberculosis enhances host survival. Proc. Natl. Acad. Sci. USA 95, 1568815693 (1998).
  7. Hamasur, B. et al. A mycobacterial lipoarabinomannan specific monoclonal antibody and its F(ab′) fragment prolong survival of mice infected with Mycobacterium tuberculosis. Clin. Exp. Immunol. 138, 3038 (2004).
  8. Williams, A. et al. Passive protection with immunoglobulin A antibodies against tuberculous early infection of the lungs. Immunology 111, 328333 (2004).
  9. Pethe, K. et al. The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 412, 190194 (2001).
  10. Maglione, P.J., Xu, J. & Chan, J. B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J. Immunol. 178, 72227234 (2007).
  11. Maglione, P.J., Xu, J., Casadevall, A. & Chan, J. Fcγ receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection. J. Immunol. 180, 33293338 (2008).
  12. Casadevall, A. & Pirofski, L.A. A reappraisal of humoral immunity based on mechanisms of antibody-mediated protection against intracellular pathogens. Adv. Immunol. 91, 144 (2006).
  13. Russo, R.T. & Mariano, M. B-1 cell protective role in murine primary Mycobacterium bovis bacillus Calmette-Guerin infection. Immunobiology 215, 10051014 (2010).
  14. Subramaniam, K. et al. IgM+ memory B cell expression predicts HIV-associated cryptococcosis status. J. Infect. Dis. 200, 244251 (2009).
  15. Burns, T., Abadi, M. & Pirofski, L.A. Modulation of the lung inflammatory response to serotype 8 pneumococcal infection by a human immunoglobulin m monoclonal antibody to serotype 8 capsular polysaccharide. Infect. Immun. 73, 45304538 (2005).
  16. Fabrizio, K., Groner, A., Boes, M. & Pirofski, L.A. A human monoclonal immunoglobulin M reduces bacteremia and inflammation in a mouse model of systemic pneumococcal infection. Clin. Vaccine Immunol. 14, 382390 (2007).
  17. Tian, H., Weber, S., Thorkildson, P., Kozel, T.R. & Pirofski, L.A. Efficacy of opsonic and nonopsonic serotype 3 pneumococcal capsular polysaccharide-specific monoclonal antibodies against intranasal challenge with Streptococcus pneumoniae in mice. Infect. Immun. 77, 15021513 (2009).
  18. Coleman, J.R., Papamichail, D., Yano, M., Garcia-Suarez, M.M. & Pirofski, L.A. Designed reduction of Streptococcus pneumoniae pathogenicity via synthetic changes in virulence factor codon-pair bias. J. Infect. Dis. 203, 12641273 (2011).
  19. Weber, S.E., Tian, H. & Pirofski, L.A. CD8+ cells enhance resistance to pulmonary serotype 3 Streptococcus pneumoniae infection in mice. J. Immunol. 186, 432442 (2011).
  20. LeMessurier, K., Hacker, H., Tuomanen, E. & Redecke, V. Inhibition of T cells provides protection against early invasive pneumococcal disease. Infect. Immun. 78, 52875294 (2010).
  21. Watson, D.A., Musher, D.M., Jacobson, J.W. & Verhoef, J. A brief history of the pneumococcus in biomedical research: a panoply of scientific discovery. Clin. Infect. Dis. 17, 913924 (1993).
  22. Baumgarth, N. et al. Innate and acquired humoral immunities to influenza virus are mediated by distinct arms of the immune system. Proc. Natl. Acad. Sci. USA 96, 22502255 (1999).
  23. Carsetti, R., Rosado, M.M. & Wardmann, H. Peripheral development of B cells in mouse and man. Immunol. Rev. 197, 179191 (2004).
  24. Griffin, D.O., Holodick, N.E. & Rothstein, T.L. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+CD27+CD43+CD70. J. Exp. Med. 208, 6780 (2011).
  25. Rajan, B., Ramalingam, T. & Rajan, T.V. Critical role for IgM in host protection in experimental filarial infection. J. Immunol. 175, 18271833 (2005).
  26. Boes, M., Prodeus, A.P., Schmidt, T., Carroll, M.C. & Chen, J. A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J. Exp. Med. 188, 23812386 (1998).
  27. Subramaniam, K.S. et al. The absence of serum IgM enhances the susceptibility of mice to pulmonary challenge with Cryptococcus neoformans. J. Immunol. 184, 57555767 (2010).
  28. Jayasekera, J.P., Moseman, E.A. & Carroll, M.C. Natural antibody and complement mediate neutralization of influenza virus in the absence of prior immunity. J. Virol. 81, 34873494 (2007).
  29. Diamond, M.S. et al. A critical role for induced IgM in the protection against West Nile virus infection. J. Exp. Med. 198, 18531862 (2003).
  30. Kruetzmann, S. et al. Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J. Exp. Med. 197, 939945 (2003).
  31. Nimmerjahn, F. & Ravetch, J.V. The antiinflammatory activity of IgG: the intravenous IgG paradox. J. Exp. Med. 204, 1115 (2007).
  32. Anthony, R.M., Kobayashi, T., Wermeling, F. & Ravetch, J.V. Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. Nature 475, 110113 (2011).
  33. Li, F. & Ravetch, J.V. Inhibitory Fcgamma receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science 333, 10301034 (2011).
  34. Skurnik, D. et al. Animal and human antibodies to distinct Staphylococcus aureus antigens mutually neutralize opsonic killing and protection in mice. J. Clin. Invest. 120, 32203233 (2010).
  35. Pirofski, L.A. Why antibodies disobey the Hippocratic Oath and end up doing harm: a new clue. J. Clin. Invest. 120, 30993102 (2010).
  36. Lendvai, N., Qu, X., Hsueh, W. & Casadevall, A. Mechanism for the isotype dependence of antibody-mediated toxicity in Cryptococcus neoformans infected mice. J. Immunol. 164, 43674374 (2000).
  37. Feldmesser, M., Mednick, A. & Casadevall, A. Antibody-mediated protection in murine Cryptococcus neoformans infection is associated with subtle pleotrophic effects on the cytokine and leukocyte response. Infect. Immun. 70, 15711580 (2002).
  38. Nimmerjahn, F. & Ravetch, J.V. Antibody-mediated modulation of immune responses. Immunol. Rev. 236, 265275 (2010).
  39. Nimmerjahn, F. & Ravetch, J.V. FcgammaRs in health and disease. Curr. Top. Microbiol. Immunol. 350, 105125 (2011).
  40. Casadevall, A. & Pirofski, L. Host-Pathogen Interactions: The basic concepts of microbial commensalisms, colonization, infection, and disease. Infect. Immun. 68, 65116518 (2000).
  41. Casadevall, A. & Pirofski, L. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect. Immun. 67, 37033713 (1999).
  42. Casadevall, A. & Pirofski, L. The damage-response framework of microbial pathogenesis. Nat. Rev. Microbiol. 1, 1724 (2003).
  43. Connolly, S.E., Thanassi, D.G. & Benach, J.L. Generation of a complement-independent bactericidal IgM against a relapsing fever Borrelia. J. Immunol. 172, 11911197 (2004).
  44. LaRocca, T.J., Katona, L.I., Thanassi, D.G. & Benach, J.L. Bactericidal action of a complement-independent antibody against relapsing fever Borrelia resides in its variable region. J. Immunol. 180, 62226228 (2008).
  45. Magliani, W. et al. Protective antifungal yeast killer toxin-like antibodies. Curr. Mol. Med. 5, 443452 (2005).
  46. Brena, S. et al. Fungicidal monoclonal antibody C7 interferes with iron acquisition in Candida albicans. Antimicrob. Agents Chemother. 55, 31563163 (2011).
  47. Torosantucci, A. et al. A novel glyco-conjugate vaccine against fungal pathogens. J. Exp. Med. 202, 597606 (2005).
  48. Alviano, D.S. et al. Melanin from Fonsecaea pedrosoi induces production of human antifungal antibodies and enhances the antimicrobial efficacy of phagocytes. Infect. Immun. 72, 229237 (2004).
  49. Wentworth, P. Jr. et al. Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science 298, 21952199 (2002).
  50. Yano, M., Gohil, S., Coleman, J.R., Manix, C. & Pirofski, L.A. Antibodies to Streptococcus pneumoniae capsular polysaccharide enhance pneumococcal quorum sensing. mBio doi:10.1128/mBio.00176-11 (13 September 2011).
  51. Vouldoukis, I. et al. IgE mediates killing of intracellular Toxoplasma gondii by human macrophages through CD23-dependent, interleukin-10 sensitive pathway. PLoS ONE 6, e18289 (2011).
  52. Lampert, P.W., Joseph, B.S. & Oldstone, M.B. Antibody-induced capping of measles virus antigens on plasma membrane studied by electron microscopy. J. Virol. 15, 12481255 (1975).
  53. Desplanques, A.S., Nauwynck, H.J., Tilleman, K., Deforce, D. & Favoreel, H.W. Tyrosine phosphorylation and lipid raft association of pseudorabies virus glycoprotein E during antibody-mediated capping. Virology 362, 6066 (2007).
  54. McClelland, E.E., Nicola, A.M., Prados-Rosales, R. & Casadevall, A. Ab binding alters gene expression in Cryptococcus neoformans and directly modulates fungal metabolism. J. Clin. Invest. 120, 13551361 (2010).
  55. Torres, M. & Casadevall, A. The immunoglobulin constant region contributes to affinity and specificity. Trends Immunol. 29, 9197 (2008).
  56. Edelson, B.T., Cossart, P. & Unanue, E.R. Cutting edge: paradigm revisited: antibody provides resistance to Listeria infection. J. Immunol. 163, 40874090 (1999).
  57. Edelson, B.T. & Unanue, E.R. Intracellular antibody neutralizes Listeria growth. Immunity 14, 503512 (2001).
  58. Nosanchuk, J.D., Steenbergen, J.N., Shi, L., Deepe, G.S. Jr. & Casadevall, A. Antibodies to a cell surface histone-like protein protect against Histoplasma capsulatum. J. Clin. Invest. 112, 11641175 (2003).
  59. Torres, M., May, R., Scharff, M.D. & Casadevall, A. Variable-region identical antibodies differing in isotype demonstrate differences in fine specificity and isotype. J. Immunol. 174, 21322142 (2005).
  60. Torosantucci, A. et al. Protection by anti-β-glucan antibodies is associated with restricted β-1,3 glucan binding specificity and inhibition of fungal growth and adherence. PLoS ONE 4, e5392 (2009).
  61. Torres, M., Fernandez-Fuentes, N., Fiser, A. & Casadevall, A. The immunoglobulin heavy chain constant region affects kinetic and thermodynamic parameters of antibody variable region interactions with antigen. J. Biol. Chem. 282, 1391713927 (2007).
  62. Abboud, N. et al. A requirement for FcγR in antibody-mediated bacterial toxin neutralization. J. Exp. Med. 207, 23952405 (2010).
  63. Wong, S.E., Sellers, B.D. & Jacobson, M.P. Effects of somatic mutations on CDR loop flexibility during affinity maturation. Proteins 79, 821829 (2011).
  64. Wedemayer, G.J., Patten, P.A., Wang, L.H., Schultz, P.G. & Stevens, R.C. Structural insights into the evolution of an antibody combining site. Science 276, 16651669 (1997).
  65. Kirkham, P.M., Mortari, F., Newton, J.A. & Schroeder, H.W. Immunoglobulin VH clan and family identity predicts variable domain structure and may influence antigen binding. EMBO J. 11, 603609 (1991).
  66. Varshney, A.K. et al. Generation, characterization and epitope mapping of neutralizing and protective monoclonal antibodies against staphylococcal enterotoxin B induced lethal shock. J. Biol. Chem. 286, 97379747 (2011).
  67. Beernink, P.T. et al. Fine antigenic specificity and cooperative bactericidal activity of monoclonal antibodies directed at the meningococcal vaccine candidate factor h-binding protein. Infect. Immun. 76, 42324240 (2008).
  68. Taborda, C.P. & Casadevall, A. Immunoglobulin M efficacy against Cryptococcus neoformans: mechanism, dose dependence and prozone-like effects in passive protection experiments. J. Immunol. 66, 21002107 (2001).
  69. Taborda, C.P., Rivera, J., Zaragoza, O. & Casadevall, A. More is not necessarily better: 'Prozone-like' effects in passive immunization with Immunoglobulin G. J. Immunol. 140, 36213630 (2003).
  70. Rivera, J. & Casadevall, A. Mouse genetic background is a major determinant of isotype-related differences for antibody-mediated protective efficacy against Cryptococcus neoformans. J. Immunol. 174, 80178026 (2005).
  71. Casadevall, A., Fang, F.C. & Pirofski, L.A. Microbial virulence as an emergent property: consequences and opportunities. PLoS Pathog. 7, e1002136 (2011).
  72. Casadevall, A. Antibody immunity and invasive fungal infections. Infect. Immun. 63, 42114218 (1995).
  73. Dromer, F., Charreire, J., Contrepois, A., Carbon, C. & Yeni, P. Protection of mice against experimental cryptococcosis by anti-Cryptococcus neoformans monoclonal antibody. Infect. Immun. 55, 749752 (1987).
  74. Schlageter, A.M. & Kozel, T.R. Opsonization of Cryptococcus neoformans by a family of isotype-switch variant antibodies specific for the capsular polysaccharide. Infect. Immun. 58, 19141918 (1990).
  75. Mukherjee, J., Scharff, M.D. & Casadevall, A. Protective murine monoclonal antibodies to Cryptococcus neoformans. Infect. Immun. 60, 45344541 (1992).
  76. Fleuridor, R., Lees, A. & Pirofski, L. A cryptococcal capsular polysaccharide mimotope prolongs the survival of mice with Cryptococcus neoformans infection. J. Immunol. 166, 10871096 (2001).
  77. Casadevall, A. & Pirofski, L. Insights into mechanisms of antibody-mediated immunity from studies with Cryptococcus neoformans. Curr. Mol. Med. 5, 421433 (2005).
  78. Ponge, J.F. Emergent properties from organisms to ecosystems: towards a realistic approach. Biol. Rev. Camb. Philos. Soc. 80, 403411 (2005).
  79. Ablowitz, R. The theory of emergence. Philos. Sci. 6, 116 (1939).
  80. Baylis, C.A. The philosophic functions of emergence. Philos. Rev. 38, 372384 (1929).
  81. Robbins, J.B., Schneerson, R. & Szu, S.C. Perspective: Hypothesis: serum IgG antibody is sufficient to confer protection against infectious diseases by inactivating the inoculum. J. Infect. Dis. 171, 13871398 (1995).
  82. Casadevall, A. & Pirofski, L.A. Antibody-mediated regulation of cellular immunity and the inflammatory response. Trends Immunol. 24, 474478 (2003).

Download references

Author information

Affiliations

  1. Arturo Casadevall and Liise-anne Pirofski are in the Department of Microbiology and Immunology and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Additional data