Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple layers of B cell memory with different effector functions

Abstract

Memory B cells are at the center of longstanding controversies regarding the presence of antigen for their survival and their re-engagement in germinal centers after secondary challenge. Using a new mouse model of memory B cell labeling dependent on the cytidine deaminase AID, we show that after immunization with a particulate antigen, B cell memory appeared in several subsets, comprising clusters of immunoglobulin M–positive (IgM+) and IgG1+ B cells in germinal center–like structures that persisted up to 8 months after immunization, as well as IgM+ and IgG1+ B cells with a memory phenotype outside of B cell follicles. After challenge, the IgG subset differentiated into plasmocytes, whereas the IgM subset reinitiated a germinal center reaction. This model, in which B cell memory appears in several layers with different functions, reconciles previous conflicting propositions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tamoxifen-dependent induction of EYFP expression in GC B cells from AID-Cre-EYFP mice after secondary SRBC challenge.
Figure 2: Labeling of IgM, IgG1 and PNA identifies four EYFP+ memory B cell subsets with distinct evolution profiles over time.
Figure 3: GC structures persist up to 180 d after secondary immunization with SRBCs.
Figure 4: EYFP+ B cells in clusters are associated with FDCs and CD4+ cells and proliferate.
Figure 5: B cell memory subpopulations show distinct differentiation potentials.
Figure 6: Confocal microcopy of spleen sections after tertiary immunization with SRBCs and after adoptive transfer of B cell memory subpopulations.
Figure 7: Analysis of somatic mutations of immunoglobulin genes in memory subsets from AID-Cre-EYFP and wild-type mice at various times after secondary challenge with SRBCs.

Similar content being viewed by others

References

  1. Plotkin, S. Vaccines: correlates of vaccine-induced immunity. Clin. Infect. Dis. 47, 401–409 (2008).

    Article  Google Scholar 

  2. Berek, C., Berger, A. & Apel, M. Maturation of the immune response in germinal centers. Cell 67, 1121–1129 (1991).

    Article  CAS  Google Scholar 

  3. Jacob, J., Kelsoe, G., Rajewsky, K. & Weiss, U. Intraclonal generation of antibody mutants in germinal centres. Nature 354, 389–392 (1991).

    Article  CAS  Google Scholar 

  4. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  Google Scholar 

  5. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  Google Scholar 

  6. MacLennan, I.C., Liu, Y.J., Oldfield, S., Zhang, J. & Lane, P.J. The evolution of B-cell clones. Curr. Top. Microbiol. Immunol. 159, 37–63 (1990).

    CAS  PubMed  Google Scholar 

  7. McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Antigen-specific memory B cell development. Annu. Rev. Immunol. 23, 487–513 (2005).

    Article  CAS  Google Scholar 

  8. Dorner, T. & Radbruch, A. Antibodies and B cell memory in viral immunity. Immunity 27, 384–392 (2007).

    Article  Google Scholar 

  9. Mandel, T.E., Phipps, R.P., Abbot, A.P. & Tew, J.G. Long-term antigen retention by dendritic cells in the popliteal lymph node of immunized mice. Immunology 43, 353–362 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gray, D. & Skarvall, H. B-cell memory is short-lived in the absence of antigen. Nature 336, 70–73 (1988).

    Article  CAS  Google Scholar 

  11. Bachmann, M.F., Odermatt, B., Hengartner, H. & Zinkernagel, R.M. Induction of long-lived germinal centers associated with persisting antigen after viral infection. J. Exp. Med. 183, 2259–2269 (1996).

    Article  CAS  Google Scholar 

  12. Schittek, B. & Rajewsky, K. Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. Nature 346, 749–751 (1990).

    Article  CAS  Google Scholar 

  13. Maruyama, M., Lam, K.P. & Rajewsky, K. Memory B-cell persistence is independent of persisting immunizing antigen. Nature 407, 636–642 (2000).

    Article  CAS  Google Scholar 

  14. Siekevitz, M., Kocks, C., Rajewsky, K. & Dildrop, R. Analysis of somatic mutation and class switching in naive and memory B cells generating adoptive primary and secondary responses. Cell 48, 757–770 (1987).

    Article  CAS  Google Scholar 

  15. Berek, C. & Milstein, C. Mutation drift and repertoire shift in the maturation of the immune response. Immunol. Rev. 96, 23–41 (1987).

    Article  CAS  Google Scholar 

  16. Ridderstad, A. & Tarlinton, D.M. Kinetics of establishing the memory B cell population as revealed by CD38 expression. J. Immunol. 160, 4688–4695 (1998).

    CAS  PubMed  Google Scholar 

  17. Takahashi, Y., Ohta, H. & Takemori, T. Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire. Immunity 14, 181–192 (2001).

    Article  CAS  Google Scholar 

  18. Anderson, S.M., Tomayko, M.M., Ahuja, A., Haberman, A.M. & Shlomchik, M.J. New markers for murine memory B cells that define mutated and unmutated subsets. J. Exp. Med. 204, 2103–2114 (2007).

    Article  CAS  Google Scholar 

  19. Smith, K.G., Light, A., Nossal, G.J. & Tarlinton, D.M. The extent of affinity maturation differs between the memory and antibody-forming cell compartments in the primary immune response. EMBO J. 16, 2996–3006 (1997).

    Article  CAS  Google Scholar 

  20. Shinall, S.M., Gonzalez-Fernandez, M., Noelle, R.J. & Waldschmidt, T.J. Identification of murine germinal center B cell subsets defined by the expression of surface isotypes and differentiation antigens. J. Immunol. 164, 5729–5738 (2000).

    Article  CAS  Google Scholar 

  21. Wolniak, K.L., Noelle, R.J. & Waldschmidt, T.J. Characterization of (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific germinal center B cells and antigen-binding B220- cells after primary NP challenge in mice. J. Immunol. 177, 2072–2079 (2006).

    Article  CAS  Google Scholar 

  22. Kaisho, T., Schwenk, F. & Rajewsky, K. The roles of γ1 heavy chain membrane expression and cytoplasmic tail in IgG1 responses. Science 276, 412–415 (1997).

    Article  CAS  Google Scholar 

  23. Martin, S.W. & Goodnow, C.C. Burst-enhancing role of the IgG membrane tail as a molecular determinant of memory. Nat. Immunol. 3, 182–188 (2002).

    Article  CAS  Google Scholar 

  24. Wakabayashi, C., Adachi, T., Wienands, J. & Tsubata, T. A distinct signaling pathway used by the IgG-containing B cell antigen receptor. Science 298, 2392–2395 (2002).

    Article  CAS  Google Scholar 

  25. Feil, R., Wagner, J., Metzger, D. & Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 237, 752–757 (1997).

    Article  CAS  Google Scholar 

  26. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    Article  CAS  Google Scholar 

  27. Blink, E.J. et al. Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization. J. Exp. Med. 201, 545–554 (2005).

    Article  CAS  Google Scholar 

  28. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    Article  CAS  Google Scholar 

  29. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).

    Article  CAS  Google Scholar 

  30. Fazilleau, N. et al. Lymphoid reservoirs of antigen-specific memory T helper cells. Nat. Immunol. 8, 753–761 (2007).

    Article  CAS  Google Scholar 

  31. Oliver, A.M., Martin, F. & Kearney, J.F. Mouse CD38 is down-regulated on germinal center B cells and mature plasma cells. J. Immunol. 158, 1108–1115 (1997).

    CAS  PubMed  Google Scholar 

  32. Reichert, R.A., Gallatin, W.M., Weissman, I.L. & Butcher, E.C. Germinal center B cells lack homing receptors necessary for normal lymphocyte recirculation. J. Exp. Med. 157, 813–827 (1983).

    Article  CAS  Google Scholar 

  33. Gatto, D. et al. Regulation of memory antibody levels: the role of persisting antigen versus plasma cell life span. J. Immunol. 178, 67–76 (2007).

    Article  CAS  Google Scholar 

  34. McBride, K.M. et al. Regulation of class switch recombination and somatic mutation by AID phosphorylation. J. Exp. Med. 205, 2585–2594 (2008).

    Article  CAS  Google Scholar 

  35. Takizawa, M. et al. AID expression levels determine the extent of cMyc oncogenic translocations and the incidence of B cell tumor development. J. Exp. Med. 205, 1949–1957 (2008).

    Article  CAS  Google Scholar 

  36. White, H. & Gray, D. Analysis of immunoglobulin (Ig) isotype diversity and IgM/D memory in the response to phenyl-oxazolone. J. Exp. Med. 191, 2209–2220 (2000).

    Article  CAS  Google Scholar 

  37. Williams, G.T., Jolly, C.J., Kohler, J. & Neuberger, M.S. The contribution of somatic hypermutation to the diversity of serum immunoglobulin: dramatic increase with age. Immunity 13, 409–417 (2000).

    Article  CAS  Google Scholar 

  38. Richard, K., Pierce, S.K. & Song, W. The agonists of TLR4 and 9 are sufficient to activate memory B cells to differentiate into plasma cells in vitro but not in vivo. J. Immunol. 181, 1746–1752 (2008).

    Article  CAS  Google Scholar 

  39. Weill, J.C., Weller, S. & Reynaud, C.A. Human marginal zone B cells. Annu. Rev. Immunol. 27, 267–285 (2009).

    Article  CAS  Google Scholar 

  40. Berek, C. The development of B cells and the B-cell repertoire in the microenvironment of the germinal center. Immunol. Rev. 126, 5–19 (1992).

    Article  CAS  Google Scholar 

  41. McHeyzer-Williams, M.G., Nossal, G.J. & Lalor, P.A. Molecular characterization of single memory B cells. Nature 350, 502–505 (1991).

    Article  CAS  Google Scholar 

  42. Mamani-Matsuda, M. et al. The human spleen is a major reservoir for long-lived vaccinia virus-specific memory B cells. Blood 111, 4653–4659 (2008).

    Article  CAS  Google Scholar 

  43. Delbos, F. et al. Contribution of DNA polymerase eta to immunoglobulin gene hypermutation in the mouse. J. Exp. Med. 201, 1191–1196 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Metzger (Institute of Genetics and Molecular and Cellular Biology) for vector containing Cre-ERT2; P. Charnay (Institut National de la Santé et de la Recherche Médicale U368) for Rosa26-loxP-EYFP mice on a mixed C57BL/6 × DBA/2 background; A. De Smet for assistance with embryonic stem cell culture; D. Lecoeuche for technical help; the Service d'Expérimentation Animale et de Transgénèse (Villejuif) for the production of the AID-CreERT2 mouse line; the Necker Laboratoire d'Expérimentation Animale et de Transgénèse for maintaining mouse lines (V. Caulet, Y. Lepage, Y. Moreau and A. David); M. Garfa-Traoré and N. Goudin for training in confocal microscopy; and C. Berek and A. Cumano for critical reading of the manuscript. Supported by the Agence National de la Recherche (Microbiologie et Immunologie 'Immune Memory'), the Fondation Princesse Grace and the Ligue Contre le Cancer (équipe labellisée).

Author information

Authors and Affiliations

Authors

Contributions

I.D. designed and did most of the experiments and contributed to the manuscript; B.B. contributed to mouse cell analysis; V.V. and F.D. contributed to sequence analysis; J.M. sorted cells; S.S. contributed to the conception of the model; and C.-A.R and J.-C.W. share senior authorship and scientific responsibility.

Corresponding authors

Correspondence to Claude-Agnès Reynaud or Jean-Claude Weill.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–2 (PDF 661 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dogan, I., Bertocci, B., Vilmont, V. et al. Multiple layers of B cell memory with different effector functions. Nat Immunol 10, 1292–1299 (2009). https://doi.org/10.1038/ni.1814

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1814

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing