Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Subduction-zone earthquake complexity related to frictional anisotropy in antigorite

Abstract

Earthquakes generated in subduction zones are caused by unstable movements along faults. This fault-slip instability is determined by frictional forces that depend on the temperature, pressure, morphology and deformation state of the fault rocks. Fault friction may also be influenced by preferred mineral orientations. Over-thrusting of rocks at the interface between a subducting slab and the overlying mantle wedge generates shear deformation that causes minerals to align1,2,3, and this preferred mineral orientation affects the propagation of shear seismic waves4,5,6. Here we use laboratory experiments to simulate fault slip in antigorite, the most abundant hydrous mineral phase within Earth’s upper mantle7. Using atomic force microscopy, we show that antigorite single crystals possess strong frictional anisotropy on their basal slip surface and that preferred mineral alignment extends this property to a regional scale. Depending on the alignment, fault movements can occur along a high-friction direction, creating stick-slip behaviour that generates earthquakes. In contrast, if movements occur along a low-friction direction, the mantle wedge will deform aseismically. Our results imply that mantle rocks in subduction-zone thrust faults can exhibit two opposite frictional behaviours, seismic and aseismic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General scheme of plate motions in an oblique subduction zone.
Figure 2: Nanotribological characterization of antigorite(001).
Figure 3: Frictional anisotropy of antigorite crystals.
Figure 4: Modelling of frictional anisotropy between the upper mantle and the subducting slab at thrust faults.

Similar content being viewed by others

References

  1. Bezacier, L., Reynard, B., Bass, J. D., Sanchez-Valle, C. & Van de Moortèle, B Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. Earth Planet. Sci. Lett. 289, 198–208 (2010).

    Article  Google Scholar 

  2. Hirauchi, K., Michibayashi, K., Ueda, H. & Katayama, I. Spatial variations in antigorite fabric across a serpentinite subduction channel: Insights from the Ohmachi Seamount, Izu-Bonin frontal arc. Earth Planet. Sci. Lett. 299, 196–206 (2010).

    Article  Google Scholar 

  3. Jung, H. Seismic anisotropy produced by serpentine in mantle wedge. Earth Planet. Sci. Lett. 307, 535–543 (2011).

    Article  Google Scholar 

  4. Katayama, I., Hirauchi, K., Michibayashi, K. & Ando, J. Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature 461, 1114–1117 (2009).

    Article  Google Scholar 

  5. Mookherjee, M. & Capitani, G. C. Trench parallel anisotropy and large delay times: Elasticity and anisotropy of antigorite at high pressures. Geophys. Res. Lett. 38, L09315 (2011).

    Google Scholar 

  6. Faccenda, M., Burlini, L., Gerya, T. V. & Mainprice, D. Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature 455, 1097–1100 (2008).

    Article  Google Scholar 

  7. Hyndman, R. D. & Peacock, S. M. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett. 212, 417–432 (2003).

    Article  Google Scholar 

  8. Jones, C. H. How faults accommodate plate motion. Science 300, 1105–1106 (2003).

    Article  Google Scholar 

  9. Eberhart-Phillips, D. et al. The 2002 Denali fault earthquake, Alaska: A large magnitude, slip-partitioned event. Science 300, 1113–1118 (2003).

    Article  Google Scholar 

  10. McCaffrey, R. Oblique plate convergence, slip vectors, and forearc deformation. J. Geophys. Res. 97, 8905–8915 (1992).

    Article  Google Scholar 

  11. Fitch, T. J. Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and the western Pacific. J. Geophys. Res. 77, 4432–4460 (1972).

    Article  Google Scholar 

  12. Yu, G., Wesnousky, S. G. & Ekström, G. Slip partitioning along major convergent plate boundaries. Pure Appl. Geophys. 140, 183–210 (1993).

    Article  Google Scholar 

  13. Liu, X., McNally, K. C. & Shen, Z. Evidence for a role of the downgoing slab in earthquake slip partitioning at oblique subduction zones. J. Geophys. Res. 100, 15351–15372 (1995).

    Article  Google Scholar 

  14. Campione, M., Trabattoni, S. & Moret, M. Nanoscale mapping of frictional anisotropy. Tribol. Lett. 45, 219–224 (2011).

    Article  Google Scholar 

  15. Capitani, G. C. & Mellini, M. The modulated crystal structure of antigorite: The (m = 17) polysome. Am. Miner. 89, 147–158 (2004).

    Article  Google Scholar 

  16. Capitani, G. C. & Mellini, M. The crystal structure of a second antigorite polysome (m = 16), by single-crystal synchrotron diffraction. Am. Miner. 91, 394–399 (2006).

    Article  Google Scholar 

  17. Palacios-Lidon, E. et al. TEM-assisted dynamic scanning force microscope imaging of (001) antigorite: Surfaces and steps on a modulated silicate. Am. Miner. 95, 673–685 (2010).

    Article  Google Scholar 

  18. Zmitrowicz, A. Mathematical descriptions of anisotropic friction. Int. J. Solids Struct. 25, 837–862 (1989).

    Article  Google Scholar 

  19. Campione, M. & Fumagalli, E. Friction anisotropy of the surface of organic crystals and its impact on scanning force microscopy. Phys. Rev. Lett. 105, 166103 (2010).

    Article  Google Scholar 

  20. Choi, J. S. et al. Friction anisotropy–driven domain imaging on exfoliated monolayer graphene. Science 333, 607–610 (2011).

    Article  Google Scholar 

  21. Park, J. Y. High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science 309, 1354–1356 (2005).

    Article  Google Scholar 

  22. Poli, S. & Schmidt, M. W. Petrology of subducted slabs. Annu. Rev. Earth Planet. Sci. 30, 207–235 (2002).

    Article  Google Scholar 

  23. Li, Q., Tullis, T. E., Goldsby, D. & Carpick, R. W. Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480, 233–236 (2011).

    Article  Google Scholar 

  24. Grasselli, G. & Egger, P. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters. Int. J. Rock Mec. Min. 40, 25–40 (2003).

    Article  Google Scholar 

  25. Hyndman, R. D., Yamano, M. & Oleskevich, D. A. The seismogenic zone of subduction thrust faults. Island Arc 6, 244–260 (1997).

    Article  Google Scholar 

  26. Horcas, I. et al. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    Article  Google Scholar 

  27. Sul, O., Jang, S. & Yang, E. H. Step-edge calibration of torsional sensitivity for lateral force microscopy. Meas. Sci. Technol. 20, 115104 (2009).

    Article  Google Scholar 

  28. Romano, E. et al. Combined use of AFM and FTIR in the analysis of the hydrogen termination of Si (100) surfaces. Microscopy: Science, Technology, Applications and Education 3, 1984–1992 (2010).

    Google Scholar 

Download references

Acknowledgements

The microscopic characterization was performed at the Atomic Force Microscopy Laboratory of the Department of Materials Science, Università degli Studi di Milano Bicocca, thanks to the support of A. Sassella. We thank N. Malaspina for discussions and comments that improved this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.C. performed the nanotribological analysis and developed the geophysical model, G.C.C. prepared natural samples and performed structural analysis. Both authors discussed the results and implications.

Corresponding author

Correspondence to Marcello Campione.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 933 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campione, M., Capitani, G. Subduction-zone earthquake complexity related to frictional anisotropy in antigorite. Nature Geosci 6, 847–851 (2013). https://doi.org/10.1038/ngeo1905

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1905

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing