Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Winter warming in West Antarctica caused by central tropical Pacific warming

Abstract

The Pacific sector of Antarctica, including both the Antarctic Peninsula and continental West Antarctica, has experienced substantial warming in the past 30 years. An increase in the circumpolar westerlies, owing in part to the decline in stratospheric ozone concentrations since the late 1970s, may account for warming trends in the peninsula region in austral summer and autumn. The more widespread warming in continental West Antarctica (Ellsworth Land and Marie Byrd Land) occurs primarily in austral winter and spring, and remains unexplained. Here we use observations of Antarctic surface temperature and global sea surface temperature, and atmospheric circulation data to show that recent warming in continental West Antarctica is linked to sea surface temperature changes in the tropical Pacific. Over the past 30 years, anomalous sea surface temperatures in the central tropical Pacific have generated an atmospheric Rossby wave response that influences atmospheric circulation over the Amundsen Sea, causing increased advection of warm air to the Antarctic continent. General circulation model experiments show that the central tropical Pacific is a critical region for producing the observed high latitude response. We conclude that, by affecting the atmospheric circulation at high southern latitudes, increasing tropical sea surface temperatures may account for West Antarctic warming through most of the twentieth century.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antarctic temperature and Southern Hemisphere circulation changes in austral winter.
Figure 2: Principal modes of covarying tropical sea surface temperature and Southern Hemisphere circulation in austral winter.
Figure 3: Relationship between Southern Hemisphere circulation and West Antarctic climate in austral winter.
Figure 4: Response of ECHAM4.6 atmospheric model to anomalous warm central Pacific sea surface temperature in austral winter.

Similar content being viewed by others

References

  1. Vaughan, D. G. et al. Recent rapid regional climate warming on the Antarctic Peninsula. Clim. Change 60, 243–274 (2003).

    Article  Google Scholar 

  2. Steig, E. J. et al. Warming of the Antarctic ice sheet surface since the 1957 International Geophysical Year. Nature 457, 459–462 (2009).

    Article  Google Scholar 

  3. Goose, H. et al. Consistent past half-century trends in the atmosphere, the sea ice and the ocean at high southern latitudes. Clim. Dyn. 33, 999–1016 (2009).

    Article  Google Scholar 

  4. Cullather, R. I., Bromwich, D. H. & VanWoert, M. L. Spatial and temporal variability of Antarctic precipitation from atmospheric methods. J. Clim. 11, 334–367 (1998).

    Article  Google Scholar 

  5. Rignot, E. et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci. 1, 106–110 (2008).

    Article  Google Scholar 

  6. Thompson, D. W. J. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899 (2002).

    Article  Google Scholar 

  7. Marshall, G. J. et al. Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys. Res. Lett. 31, L14205 (2004).

    Article  Google Scholar 

  8. Kwok, R. & Comiso, J. C. Spatial patterns of variability in Antarctic surface temperature: Connections to the Southern Hemisphere Annular Mode and the Southern Oscillation. Geophys. Res. Lett. 29, 1705 (2002).

    Google Scholar 

  9. Schneider, D. P., Steig, E. J. & Comiso, J. C. Recent climate variability in Antarctica from satellite-derived temperature data. J. Clim. 17, 1569–1583 (2004).

    Article  Google Scholar 

  10. Johanson, C. M. & Fu, Q. Antarctic atmospheric temperature trend patterns from satellite observations. Geophys. Res. Lett. 34, L12703 (2007).

    Article  Google Scholar 

  11. Karoly, D. J. Southern hemisphere circulation features associated with El Niño-Southern Oscillation events. J. Clim. 2, 1239–1252 (1989).

    Article  Google Scholar 

  12. Garreaud, R. D. & Battisti, D. S. Interannual ENSO and interdecadal ENSO-like variability in the Southern Hemisphere tropospheric circulation. J. Clim. 12, 2113–2123 (1999).

    Article  Google Scholar 

  13. Harangozo, S. A. The relationship of Pacific deep tropical convection to the winter and springtime extratropical atmospheric circulation of the South Pacific in El Niño events. Geophys. Res. Lett. 31, L05206 (2004).

    Article  Google Scholar 

  14. Bromwich, D. H., Monaghan, A. J. & Guo, Z. Modelling the ENSO modulation of Antarctic Climate in the late 1990s with the Polar MM5. J. Clim. 17, 109–132 (2004).

    Article  Google Scholar 

  15. Latif, M., Kleemann, R. & Eckert, C. Greenhouse warming, decadal variability, or El Niño? An attempt to understand the anomalous 1990s. J. Clim. 10, 2221–2239 (1997).

    Article  Google Scholar 

  16. Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112, C11007 (2007).

    Article  Google Scholar 

  17. Schneider, D. P. & Steig, E. J. Ice cores record significant 1940s Antarctic warmth related to tropical climate variability. Proc. Natl Acad. Sci. 105, 12154–12158 (2008).

    Article  Google Scholar 

  18. Lachlan-Cope, T. & Connolley, W. Teleconnections between the tropical Pacific and the Amundsen-Bellinghausens Sea: Role of the El Niño/Southern Oscillation. J. Geophys. Res. 111, D23101 (2006).

    Article  Google Scholar 

  19. Bromwich, D. H., Fogt, R. L., Hodges, K. I. & Walsh, J. E. A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J. Geophys. Res. 112, D10111 (2007).

    Article  Google Scholar 

  20. Uppala, S. M. et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131, 2961–3012 (2005).

    Article  Google Scholar 

  21. Kanamitsu, M. et al. NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc 83, 1631–1643 (2002).

    Article  Google Scholar 

  22. Comiso, J. C. Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Clim. 13, 1674–1696 (2000).

    Article  Google Scholar 

  23. Bretherton, C. S., Smith, C. & Wallace, J. M. An intercomparison of methods for finding coupled patterns in climate data. J. Clim. 5, 541–560 (1992).

    Article  Google Scholar 

  24. Wallace, J. M., Smith, C. & Bretherton, C. S. Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Clim. 5, 561–576 (1992).

    Article  Google Scholar 

  25. Held, I. M. in Large-Scale Dynamical Processes in the Atmosphere (eds Hoskins, B. J. & Pearce, R.) 127–168 (Academic, 1983).

    Google Scholar 

  26. Gill, A. E. Some simple solutions for heat induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980).

    Article  Google Scholar 

  27. Mo, K. C. & Higgins, R. W. The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Weath. Rev 126, 1581–1596 (1998).

    Article  Google Scholar 

  28. Hoskins, B. J. & Karoly, D. J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179–1196 (1981).

    Article  Google Scholar 

  29. Yuan, X. & Martinson, D. G. Antarctic sea ice extent variability and its global connectivity. J. Clim. 13, 1697–1717 (2000).

    Article  Google Scholar 

  30. Roeckner, E. et al. Max Planck Institut für Meteorologie Report 218, 90 (1996).

  31. Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

  32. Schneider, D. P. et al. Antarctic temperatures over the past two centuries from ice cores. Geophys. Res. Lett. 33, L16707 (2006).

    Article  Google Scholar 

  33. Meehl, G. A. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

    Google Scholar 

  34. Xie, S-P. et al. Global warming pattern formation: Sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).

    Article  Google Scholar 

  35. Bromwich, D. H. & Fogt, R. L. Strong trends in the skill of the ERA-40 and NCEP–NCAR reanalysis in the high and midlatitudes of the Southern Hemisphere, 1958–2001. J. Clim. 17, 4603–4619 (2004).

    Article  Google Scholar 

  36. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res 108, 4407 (2003).

    Article  Google Scholar 

  37. Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

  38. Turner, J. et al. The SCAR READER Project: Toward a high-quality database of mean Antarctic meteorological observations. J. Clim. 17, 2890–2898 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation, grant numbers OPP-0837988 and 0963924. We thank G. Hoffman for providing the code for ECHAM4.6, and P. Hezel, A. Jenkins, G. H. Roe, D. P. Schneider and S. Schoenemann for fruitful comments.

Author information

Authors and Affiliations

Authors

Contributions

Q.D. did the calculations, implemented the general circulation model experiments, created the figures, and led the writing of the paper. All authors contributed to the experimental design and writing of the paper.

Corresponding author

Correspondence to Eric J. Steig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1778 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Q., Steig, E., Battisti, D. et al. Winter warming in West Antarctica caused by central tropical Pacific warming. Nature Geosci 4, 398–403 (2011). https://doi.org/10.1038/ngeo1129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing