Common variants on 8p12 and 1q24.2 confer risk of schizophrenia

Journal name:
Nature Genetics
Year published:
Published online

Schizophrenia is a severe mental disorder affecting ~1% of the world population, with heritability of up to 80%. To identify new common genetic risk factors, we performed a genome-wide association study (GWAS) in the Han Chinese population. The discovery sample set consisted of 3,750 individuals with schizophrenia and 6,468 healthy controls (1,578 cases and 1,592 controls from northern Han Chinese, 1,238 cases and 2,856 controls from central Han Chinese, and 934 cases and 2,020 controls from the southern Han Chinese). We further analyzed the strongest association signals in an additional independent cohort of 4,383 cases and 4,539 controls from the Han Chinese population. Meta-analysis identified common SNPs that associated with schizophrenia with genome-wide significance on 8p12 (rs16887244, P = 1.27 × 10−10) and 1q24.2 (rs10489202, P = 9.50 × 10−9). Our findings provide new insights into the pathogenesis of schizophrenia.


  1. Craddock, N., O'donovan, M.C. & Owen, M.J. The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J. Med. Genet. 42, 193204 (2005).
  2. McCarthy, S.E. et al. Microduplications of 16p11. 2 are associated with schizophrenia. Nat. Genet. 41, 12231227 (2009).
  3. O'Donovan, M.C. et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat. Genet. 40, 10531055 (2008).
  4. Purcell, S.M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748752 (2009).
  5. Shi, J. et al. Common variants on chromosome 6p22. 1 are associated with schizophrenia. Nature 460, 753757 (2009).
  6. Stefansson, H. et al. Common variants conferring risk of schizophrenia. Nature 460, 744747 (2009).
  7. Vacic, V. et al. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature 471, 499503 (2011).
  8. Xu, B. et al. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat. Genet. 40, 880885 (2008).
  9. Stranger, B.E. et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848853 (2007).
  10. Stranger, B.E. et al. Population genomics of human gene expression. Nat. Genet. 39, 12171224 (2007).
  11. Gibbs, J.R. et al. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet. 6, e1000952 (2010).
  12. Gaughran, F., Payne, J., Sedgwick, P.M., Cotter, D. & Berry, M. Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res. Bull. 70, 221227 (2006).
  13. Klejbor, I. et al. Fibroblast growth factor receptor signaling affects development and function of dopamine neurons–inhibition results in a schizophrenia-like syndrome in transgenic mice. J. Neurochem. 97, 12431258 (2006).
  14. Terwisscha van Scheltinga, A.F., Bakker, S.C. & Kahn, R.S. Fibroblast growth factors in schizophrenia. Schizophr. Bull. 36, 11571166 (2010).
  15. O'Donovan, M.C. et al. Analysis of 10 independent samples provides evidence for association between schizophrenia and a SNP flanking fibroblast growth factor receptor 2. Mol. Psychiatry 14, 3036 (2009).
  16. Tkachev, D. et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362, 798805 (2003).
  17. He, G. et al. MPZL1/PZR, a novel candidate predisposing schizophrenia in Han Chinese. Mol. Psychiatry 11, 748751 (2006).
  18. Chen, J. et al. Genetic structure of the Han Chinese population revealed by genome-wide SNP variation. Am. J. Hum. Genet. 85, 775785 (2009).
  19. Li, T. et al. Common variants in major histocompatibility complex region and TCF4 gene are significantly associated with schizophrenia in Han Chinese. Biol. Psychiatry 68, 671673 (2010).
  20. Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 93629367 (2009).
  21. Korn, J.M. et al. Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat. Genet. 40, 12531260 (2008).
  22. Chen, Z.J. et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat. Genet. 43, 5559 (2011).
  23. Thomas, G. et al. Capillary and microelectrophoretic separations of ligase detection reaction products produced from low-abundant point mutations in genomic DNA. Electrophoresis 25, 16681677 (2004).
  24. Yi, P. et al. PCR/LDR/capillary electrophoresis for detection of single-nucleotide differences between fetal and maternal DNA in maternal plasma. Prenat. Diagn. 29, 217222 (2009).
  25. Patterson, N., Price, A.L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
  26. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904909 (2006).
  27. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559575 (2007).
  28. Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263265 (2005).
  29. Shi, Y.Y. & He, L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15, 9798 (2005).
  30. Mantel, N. & Haenszel, W. Statistical aspects of the analysis of data from retrospective studies. J. Natl. Cancer Inst. 22, 719748 (1959).
  31. Petukhova, L. et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 466, 113117 (2010).
  32. Menashe, I., Rosenberg, P.S. & Chen, B.E. PGA: power calculator for case-control genetic association analyses. BMC Genet. 9, 36 (2008).

Download references

Author information

  1. These authors contributed equally to this work.

    • Yongyong Shi,
    • Zhiqiang Li &
    • Qi Xu


  1. Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.

    • Yongyong Shi,
    • Zhiqiang Li,
    • Ti Wang,
    • Tao Li,
    • Jiawei Shen,
    • Baojie Li,
    • Chunling Wan,
    • Shengying Qin,
    • Guang He,
    • Jue Ji,
    • Qingzhong Wang,
    • Wenjin Li,
    • Linqing Zheng,
    • Hairong Zhang &
    • Lin He
  2. Shanghai genomePilot Institutes for Genomics and Human Health, Shanghai, China.

    • Yongyong Shi,
    • Zhiqiang Li,
    • Shengying Qin,
    • Guang He &
    • Lin He
  3. Changning Mental Health Center, Shanghai, China.

    • Yongyong Shi,
    • Guoquan Zhou &
    • Weidong Ji
  4. National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.

    • Qi Xu
  5. Genes, Cognition and Psychosis Program, National Institute of Mental Health, the National Institutes of Health, Bethesda, Maryland, USA.

    • Fengyu Zhang &
    • Guoyin Feng
  6. Shanghai Institute of Mental Health, Shanghai, China.

    • Jianhua Chen,
    • Yifeng Xu &
    • Dengtang Liu
  7. Fourth People's Hospital, Wuhu, China.

    • Peng Wang &
    • Ping Yang
  8. Longquan Mountain Hospital of Guangxi Province, Liuzhou, China.

    • Benxiu Liu &
    • Wensheng Sun
  9. deCODE genetics, Reykjavik, Iceland.

    • Stacy Steinberg,
    • Hreinn Stefansson &
    • Kari Stefansson
  10. Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany.

    • Sven Cichon &
    • Markus M Nöthen
  11. Institute of Human Genetics, University of Bonn, Bonn, Germany.

    • Sven Cichon &
    • Markus M Nöthen
  12. Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Brain Genomic Imaging, Research Center Juelich, Juelich, Germany.

    • Sven Cichon
  13. Institute of Biological Psychiatry, Mental Health Centre Saint Hans, Copenhagen University Hospital, Roskilde, Denmark. .

    • Thomas Werge
  14. Department of Psychiatry, National University Hospital, Reykjavik, Iceland.

    • Engilbert Sigurdsson
  15. Section of Psychiatry and Clinical Psychology, University of Verona, Verona, Italy.

    • Sarah Tosato
  16. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.

    • Aarno Palotie
  17. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.

    • Aarno Palotie
  18. Program in Medical and Population Genetics and Genetic Analysis Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.

    • Aarno Palotie
  19. Department of Medical Genetics, University of Helsinki, Helsinki, Finland.

    • Aarno Palotie
  20. Department of Medical Genetics, Helsinki University Central Hospital, Helsinki, Finland.

    • Aarno Palotie
  21. German Center for Neurodegenerative Disorders, Bonn, Germany.

    • Markus M Nöthen
  22. Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.

    • Marcella Rietschel
  23. Department of Psychiatry, University of Bonn, Bonn, Germany.

    • Marcella Rietschel
  24. Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands.

    • Roel A Ophoff
  25. Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.

    • Roel A Ophoff
  26. Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, California, USA.

    • Roel A Ophoff
  27. Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College, London, London, UK.

    • David A Collier
  28. Division of Molecular and Clinical Neurobiology, Department of Psychiatry, Ludwig-Maximilians-University, Munich, Germany.

    • Dan Rujescu
  29. Department of Mental Health, University of Aberdeen, Royal Cornhill Hospital, Aberdeen, UK.

    • David St Clair
  30. Institutes of Biomedical Sciences, Fudan University, Shanghai, China.

    • Lin He
  31. Institute for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

    • Lin He


Y.S. and L.H. conceived of and designed the study. Y.S. supervised all the experiments and data analysis. Y.S. and Z.L. conducted data analyses and drafted the manuscript. Y.S., Z.L., F.Z., D.S.C., S.S., D.R. and L.H. revised the manuscript. Y.S., G.F., Q.X., J.C., Y.X., D.L., P.W., P.Y., B. Liu, W.S., G.Z. and W.J. recruited samples. T. Wang, J.J., T.L., J.S., J.C., Q.W., W.L., L.Z., H.Z., B. Li, C.W., S.Q. and G.H. performed or contributed to the experiments. S.S., S.C., T.W., E.S., S.T., A.P., M.M.N., M.R., R.A.O., D.A.C., D.R., D.S.C., H.S. and K.S. provided the SGENE-plus data. All authors critically reviewed and approved the manuscript.

Competing financial interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary Text and Figures (475K)

    Supplementary Figures 1–4, Supplementary Tables 1–12 and Supplementary Note

Additional data