Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optogenetics and the future of neuroscience

An Erratum to this article was published on 25 November 2015

This article has been updated

Abstract

Over the last 10 years, optogenetics has become widespread in neuroscience for the study of how specific cell types contribute to brain functions and brain disorder states. The full impact of optogenetics will emerge only when other toolsets mature, including neural connectivity and cell phenotyping tools and neural recording and imaging tools. The latter tools are rapidly improving, in part because optogenetics has helped galvanize broad interest in neurotechnology development.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Change history

  • 22 September 2015

    In the version of this article initially published, page ranges were missing for refs. 2 and 3 and the journal abbreviation was missing for ref. 21. They are, respectively, pp 1202–1212, pp 1213–1225 and Elife. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  2. Adamantidis, A. et al. Nat. Neurosci. 18, 1202–1212 (2015).

    Article  CAS  Google Scholar 

  3. Deisseroth, K. Nat. Neurosci. 18, 1213–1225 (2015).

    Article  CAS  Google Scholar 

  4. Nagel, G. et al. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  Google Scholar 

  5. Boyden, E.S. F1000 Biol. Rep. 3, 11 (2011).

    Article  Google Scholar 

  6. Han, X. & Boyden, E.S. PLoS ONE 2, e299 (2007).

    Article  Google Scholar 

  7. Zhang, F. et al. Nature 446, 633–639 (2007).

    Article  CAS  Google Scholar 

  8. Yizhar, O. et al. Nature 477, 171–178 (2011).

    Article  CAS  Google Scholar 

  9. Lin, J.Y., Knutsen, P.M., Muller, A., Kleinfeld, D. & Tsien, R.Y. Nat. Neurosci. 16, 1499–1508 (2013).

    Article  CAS  Google Scholar 

  10. Klapoetke, N.C. et al. Nat. Methods 11, 338–346 (2014).

    Article  CAS  Google Scholar 

  11. Chuong, A.S. et al. Nat. Neurosci. 17, 1123–1129 (2014).

    Article  CAS  Google Scholar 

  12. Berndt, A., Lee, S.Y., Ramakrishnan, C. & Deisseroth, K. Science 344, 420–424 (2014).

    Article  CAS  Google Scholar 

  13. Wietek, J. et al. Science 344, 409–412 (2014).

    Article  CAS  Google Scholar 

  14. Govorunova, E.G., Sineshchekov, O.A., Janz, R., Liu, X. & Spudich, J.L. Science 349, 647–650 (2015).

    Article  CAS  Google Scholar 

  15. Papagiakoumou, E. et al. Nat. Methods 7, 848–854 (2010).

    Article  CAS  Google Scholar 

  16. Andrasfalvy, B.K., Zemelman, B.V., Tang, J. & Vaziri, A. Proc. Natl. Acad. Sci. USA 107, 11981–11986 (2010).

    Article  CAS  Google Scholar 

  17. Macosko, E.Z. et al. Cell 161, 1202–1214 (2015).

    Article  CAS  Google Scholar 

  18. Chen, F., Tillberg, P.W. & Boyden, E.S. Science 347, 543–548 (2015).

    Article  CAS  Google Scholar 

  19. Peng, H., Ruan, Z., Long, F., Simpson, J.H. & Myers, E.W. Nat. Biotechnol. 28, 348–353 (2010).

    Article  CAS  Google Scholar 

  20. Krook-Magnuson, E., Armstrong, C., Oijala, M. & Soltesz, I. Nat. Commun. 4, 1376 (2013).

    Article  Google Scholar 

  21. Newman, J.P. et al. eLife 4, e07192 (2015).10.7554/eLife.07192

  22. Prevedel, R. et al. Nat. Methods 11, 727–730 (2014).

    Article  CAS  Google Scholar 

  23. Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M. & Keller, P.J. Nat. Methods 10, 413–420 (2013).

    Article  CAS  Google Scholar 

  24. Chen, T.-W. et al. Nature 499, 295–300 (2013).

    Article  CAS  Google Scholar 

  25. Chow, B.Y. & Boyden, E.S. Sci. Transl. Med. 5, 177ps5 (2013).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward S Boyden.

Ethics declarations

Competing interests

The author is an inventor on several patents for optogenetic tools, most owned by the Massachusetts Institute of Technology, which have resulted in, and may continue to result in, royalties and/or licensing revenue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyden, E. Optogenetics and the future of neuroscience. Nat Neurosci 18, 1200–1201 (2015). https://doi.org/10.1038/nn.4094

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4094

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing