Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mitochondrial Ca2+ mobilization is a key element in olfactory signaling

Abstract

In olfactory sensory neurons (OSNs), cytosolic Ca2+ controls the gain and sensitivity of olfactory signaling. Important components of the molecular machinery that orchestrates OSN Ca2+ dynamics have been described, but key details are still missing. Here, we demonstrate a critical physiological role of mitochondrial Ca2+ mobilization in mouse OSNs. Combining a new mitochondrial Ca2+ imaging approach with patch-clamp recordings, organelle mobility assays and ultrastructural analyses, our study identifies mitochondria as key determinants of olfactory signaling. We show that mitochondrial Ca2+ mobilization during sensory stimulation shapes the cytosolic Ca2+ response profile in OSNs, ensures a broad dynamic response range and maintains sensitivity of the spike generation machinery. When mitochondrial function is impaired, olfactory neurons function as simple stimulus detectors rather than as intensity encoders. Moreover, we describe activity-dependent recruitment of mitochondria to olfactory knobs, a mechanism that provides a context-dependent tool for OSNs to maintain cellular homeostasis and signaling integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bioluminescence imaging of mitochondrial Ca2+ dynamics in the stimulated mouse MOE.
Figure 2: Mitochondria regulate Ca2+ shuttling during odor responses.
Figure 3: [Ca2+]m mobilization shapes [Ca2+]c signals.
Figure 4: [Ca2+]m dynamics exert local effects.
Figure 5: Mitochondrial Ca2+ uptake ensures a broad dynamic range.
Figure 6: Action potential output in Olfr73-expressing OSNs is regulated by mitochondrial Ca2+ buffering.
Figure 7: Activity-dependent mitochondrial transport.
Figure 8: Recruitment of mitochondria to OSN knobs.

Similar content being viewed by others

References

  1. Firestein, S. How the olfactory system makes sense of scents. Nature 413, 211–218 (2001).

    Article  CAS  Google Scholar 

  2. Spehr, M. & Munger, S.D. Olfactory receptors: G protein-coupled receptors and beyond. J. Neurochem. 109, 1570–1583 (2009).

    Article  CAS  Google Scholar 

  3. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    Article  CAS  Google Scholar 

  4. Bakalyar, H.A. & Reed, R.R. Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250, 1403–1406 (1990).

    Article  CAS  Google Scholar 

  5. Nakamura, T. & Gold, G.H. A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325, 442–444 (1987).

    Article  CAS  Google Scholar 

  6. Dhallan, R.S., Yau, K.W., Schrader, K.A. & Reed, R.R. Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 347, 184–187 (1990).

    Article  CAS  Google Scholar 

  7. Kleene, S.J. & Gesteland, R.C. Calcium-activated chloride conductance in frog olfactory cilia. J. Neurosci. 11, 3624–3629 (1991).

    Article  CAS  Google Scholar 

  8. Stephan, A.B. et al. ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc. Natl. Acad. Sci. USA 106, 11776–11781 (2009).

    Article  CAS  Google Scholar 

  9. Billig, G.M., Pal, B., Fidzinski, P. & Jentsch, T.J. Ca2+-activated Cl currents are dispensable for olfaction. Nat. Neurosci. 14, 763–769 (2011).

    Article  CAS  Google Scholar 

  10. Cygnar, K.D. & Zhao, H. Phosphodiesterase 1C is dispensable for rapid response termination of olfactory sensory neurons. Nat. Neurosci. 12, 454–462 (2009).

    Article  CAS  Google Scholar 

  11. Boccaccio, A., Lagostena, L., Hagen, V. & Menini, A. Fast adaptation in mouse olfactory sensory neurons does not require the activity of phosphodiesterase. J. Gen. Physiol. 128, 171–184 (2006).

    Article  CAS  Google Scholar 

  12. Matthews, H.R. & Reisert, J. Calcium, the two-faced messenger of olfactory transduction and adaptation. Curr. Opin. Neurobiol. 13, 469–475 (2003).

    Article  CAS  Google Scholar 

  13. Reisert, J. & Matthews, H.R. Adaptation of the odour-induced response in frog olfactory receptor cells. J. Physiol. (Lond.) 519, 801–813 (1999).

    Article  CAS  Google Scholar 

  14. Kurahashi, T. & Menini, A. Mechanism of odorant adaptation in the olfactory receptor cell. Nature 385, 725–729 (1997).

    Article  CAS  Google Scholar 

  15. Bradley, J., Bonigk, W., Yau, K.W. & Frings, S. Calmodulin permanently associates with rat olfactory CNG channels under native conditions. Nat. Neurosci. 7, 705–710 (2004).

    Article  CAS  Google Scholar 

  16. Chen, T.Y. & Yau, K.W. Direct modulation by Ca2+-calmodulin of cyclic nucleotide-activated channel of rat olfactory receptor neurons. Nature 368, 545–548 (1994).

    Article  CAS  Google Scholar 

  17. Munger, S.D. et al. Central role of the CNGA4 channel subunit in Ca2+-calmodulin-dependent odor adaptation. Science 294, 2172–2175 (2001).

    Article  CAS  Google Scholar 

  18. Bradley, J., Reisert, J. & Frings, S. Regulation of cyclic nucleotide-gated channels. Curr. Opin. Neurobiol. 15, 343–349 (2005).

    Article  CAS  Google Scholar 

  19. Kleene, S.J. The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem. Senses 33, 839–859 (2008).

    Article  CAS  Google Scholar 

  20. Leinders-Zufall, T., Greer, C.A., Shepherd, G.M. & Zufall, F. Imaging odor-induced calcium transients in single olfactory cilia: specificity of activation and role in transduction. J. Neurosci. 18, 5630–5639 (1998).

    Article  CAS  Google Scholar 

  21. Noé, J., Tareilus, E., Boekhoff, I. & Breer, H. Sodium/calcium exchanger in rat olfactory neurons. Neurochem. Int. 30, 523–531 (1997).

    Article  Google Scholar 

  22. Reisert, J. & Matthews, H.R. Response properties of isolated mouse olfactory receptor cells. J. Physiol. (Lond.) 530, 113–122 (2001).

    Article  CAS  Google Scholar 

  23. Stephan, A.B. et al. The Na+/Ca2+ exchanger NCKX4 governs termination and adaptation of the mammalian olfactory response. Nat. Neurosci. 15, 131–137 (2011).

    Article  Google Scholar 

  24. Antolin, S., Reisert, J. & Matthews, H.R. Olfactory response termination involves Ca2+-ATPase in vertebrate olfactory receptor neuron cilia. J. Gen. Physiol. 135, 367–378 (2010).

    Article  CAS  Google Scholar 

  25. Weeraratne, S.D., Valentine, M., Cusick, M., Delay, R. & Van Houten, J.L. Plasma membrane calcium pumps in mouse olfactory sensory neurons. Chem. Senses 31, 725–730 (2006).

    Article  CAS  Google Scholar 

  26. Berridge, M.J., Bootman, M.D. & Roderick, H.L. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  Google Scholar 

  27. Zufall, F., Leinders-Zufall, T. & Greer, C.A. Amplification of odor-induced Ca2+ transients by store-operated Ca2+ release and its role in olfactory signal transduction. J. Neurophysiol. 83, 501–512 (2000).

    Article  CAS  Google Scholar 

  28. Rizzuto, R. & Pozzan, T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol. Rev. 86, 369–408 (2006).

    Article  CAS  Google Scholar 

  29. Kirichok, Y., Krapivinsky, G. & Clapham, D.E. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427, 360–364 (2004).

    Article  CAS  Google Scholar 

  30. Baughman, J.M. et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345 (2011).

    Article  CAS  Google Scholar 

  31. De Stefani, D., Raffaello, A., Teardo, E., Szabo, I. & Rizzuto, R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336–340 (2011).

    Article  CAS  Google Scholar 

  32. Palty, R. et al. NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc. Natl. Acad. Sci. USA 107, 436–441 (2010).

    Article  CAS  Google Scholar 

  33. MacAskill, A.F. & Kittler, J.T. Control of mitochondrial transport and localization in neurons. Trends Cell Biol. 20, 102–112 (2010).

    Article  CAS  Google Scholar 

  34. Chang, D.T. & Reynolds, I.J. Mitochondrial trafficking and morphology in healthy and injured neurons. Prog. Neurobiol. 80, 241–268 (2006).

    Article  CAS  Google Scholar 

  35. Li, Z., Okamoto, K., Hayashi, Y. & Sheng, M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873–887 (2004).

    Article  CAS  Google Scholar 

  36. Cainarca, S. et al. A photoprotein in mouse embryonic stem cells measures Ca2+ mobilization in cells and in animals. PLoS ONE 5, e8882 (2010).

    Article  Google Scholar 

  37. Veitinger, S. et al. Purinergic signalling mobilizes mitochondrial Ca2+ in mouse Sertoli cells. J. Physiol. (Lond.) 589, 5033–5055 (2011).

    Article  CAS  Google Scholar 

  38. Spehr, M., Wetzel, C.H., Hatt, H. & Ache, B.W. 3-Phosphoinositides modulate cyclic nucleotide signaling in olfactory receptor neurons. Neuron 33, 731–739 (2002).

    Article  CAS  Google Scholar 

  39. Oka, Y. et al. Odorant receptor map in the mouse olfactory bulb: in vivo sensitivity and specificity of receptor-defined glomeruli. Neuron 52, 857–869 (2006).

    Article  CAS  Google Scholar 

  40. Rizzuto, R., Simpson, A.W., Brini, M. & Pozzan, T. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358, 325–327 (1992).

    Article  CAS  Google Scholar 

  41. Herrington, J., Park, Y.B., Babcock, D.F. & Hille, B. Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells. Neuron 16, 219–228 (1996).

    Article  CAS  Google Scholar 

  42. Grosmaitre, X., Vassalli, A., Mombaerts, P., Shepherd, G.M. & Ma, M. Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: a patch clamp analysis in gene-targeted mice. Proc. Natl. Acad. Sci. USA 103, 1970–1975 (2006).

    Article  CAS  Google Scholar 

  43. Ben-Chaim, Y., Cheng, M.M. & Yau, K.W. Unitary response of mouse olfactory receptor neurons. Proc. Natl. Acad. Sci. USA 108, 822–827 (2011).

    Article  CAS  Google Scholar 

  44. Song, Y. et al. Olfactory CNG channel desensitization by Ca2+/CaM via the B1b subunit affects response termination but not sensitivity to recurring stimulation. Neuron 58, 374–386 (2008).

    Article  CAS  Google Scholar 

  45. Potter, S.M. et al. Structure and emergence of specific olfactory glomeruli in the mouse. J. Neurosci. 21, 9713–9723 (2001).

    Article  CAS  Google Scholar 

  46. Fedrizzi, L. & Brini, M. Bioluminescent Ca2+ indicators. in Calcium Measurement Methods (eds. Verkhratsky, A. & Petersen, O.H.) 81–100 (Humana Press, 2010).

  47. Detmer, S.A. & Chan, D.C. Functions and dysfunctions of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol. 8, 870–879 (2007).

    Article  CAS  Google Scholar 

  48. Reisert, J., Bauer, P.J., Yau, K.W. & Frings, S. The Ca-activated Cl channel and its control in rat olfactory receptor neurons. J. Gen. Physiol. 122, 349–363 (2003).

    Article  CAS  Google Scholar 

  49. Restrepo, D., Okada, Y. & Teeter, J.H. Odorant-regulated Ca2+ gradients in rat olfactory neurons. J. Gen. Physiol. 102, 907–924 (1993).

    Article  CAS  Google Scholar 

  50. Maue, R.A. & Dionne, V.E. Patch-clamp studies of isolated mouse olfactory receptor neurons. J. Gen. Physiol. 90, 95–125 (1987).

    Article  CAS  Google Scholar 

  51. Mashukova, A., Spehr, M., Hatt, H. & Neuhaus, E.M. Beta-arrestin2-mediated internalization of mammalian odorant receptors. J. Neurosci. 26, 9902–9912 (2006).

    Article  CAS  Google Scholar 

  52. Michalakis, S. et al. Loss of CNGB1 protein leads to olfactory dysfunction and subciliary cyclic nucleotide-gated channel trapping. J. Biol. Chem. 281, 35156–35166 (2006).

    Article  CAS  Google Scholar 

  53. Hagendorf, S., Fluegge, D., Engelhardt, C. & Spehr, M. Homeostatic control of sensory output in basal vomeronasal neurons: activity-dependent expression of ether-a-go-go-related gene potassium channels. J. Neurosci. 29, 206–221 (2009).

    Article  CAS  Google Scholar 

  54. Spehr, M. et al. Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J. Neurosci. 26, 1961–1970 (2006).

    Article  CAS  Google Scholar 

  55. Ferrero, D.M. et al. Detection and avoidance of a carnivore odor by prey. Proc. Natl. Acad. Sci. USA 108, 11235–11240 (2011).

    Article  CAS  Google Scholar 

  56. Takahashi, A., Camacho, P., Lechleiter, J.D. & Herman, B. Measurement of intracellular calcium. Physiol. Rev. 79, 1089–1125 (1999).

    Article  CAS  Google Scholar 

  57. Rivière, S., Challet, L., Fluegge, D., Spehr, M. & Rodriguez, I. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459, 574–577 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Engelhardt, H. Bartel and S. Lipartowski for assistance, W. Kammerloher and H.-J. Behrendt (Olympus Life Science) for placing the LV200 microscope at our disposal, and K. Touhara (University of Tokyo, Japan) and P. Mombaerts (Max Planck Institute of Biophysics, Frankfurt, Germany) for providing mouse strains. This work was funded by grants from the Volkswagen Foundation (M.S.) and the Deutsche Forschungsgemeinschaft (M.S., SP724/2-1; E.M.N., Exc257). M.S. is a Lichtenberg Professor of the Volkswagen Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were performed in the laboratories of M.S., W.B. and S.L. Original concept of research: D.F., S.V., S.L., E.M.N., J.S. and M.S. Research was designed by D.F., S.V., S. Cainarca, S. Corazza, E.M.N., W.B., J.S. and M.S. Data were collected by D.F., L.M.M., A.C., M.G., A.W., S.V. and J.S. and analyzed by D.F., L.M.M., J.S. and M.S. The manuscript was written by D.F., J.S. and M.S. (assistance from L.M.M., S.V., S. Corazza, W.B., E.M.N.).

Corresponding author

Correspondence to Marc Spehr.

Ethics declarations

Competing interests

The project was supported by Axxam SpA. S. Cainarca, S.L. and S. Corazza were full-time employees of Axxam SpA during project conception and data generation and were involved in study design, data collection and analysis, and decision to publish. S.L. also has a personal financial interest in Axxam SpA as cofounder and shareholder. The following three patent applications (owned by Axxam SpA) are relevant to work described in the paper:

1. European Patent 06000452.0, World Intellectual Property Organization Patent 2007080622 (19 July 2007).

2. European Patent 06000452.0, World Intellectual Property Organization Patent 2007080621 (19 July 2007).

3. World Intellectual Property Organization Patent 2006094805 (14 September 2006); priority numbers: European Patent 20050005390 20050311, European Patent 20060000171 20060105.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 12769 kb)

Supplementary Video 1

Bioluminescence imaging of mitochondrial Ca2+ dynamics in the stimulated mouse MOE. Acute coronal slices (150 μm thick) of the rostral skull of PhotoTopo mice at postnatal days P2 (Video 1), P4 (Video 2), and P6 (Video 3) are visualized at 20x magnification. For spatial orientation, 'static' transmitted light images are merged with the original frames (1 Hz capture rate) of representative live-cell [Ca2+]m bioluminescence time-lapse recordings. Bioluminescence intensity is presented in pseudocolor (transparent grey = low [Ca2+]m, red = high [Ca2+]m). Slice superfusion with a complex odor mixture (100 compounds, ~10 μM each; 10 s) induces transient light emission in spatially confined regions of the sensory epithelium, whereas bioluminescence responses are not observed in the respiratory epithelium. Membrane depolarization by an elevated extracellular K+ concentration (50 mM) triggers bioluminescent signals in broader MOE areas. By simultaneously monitoring large epithelial areas at low magnification, a gradual response delay along a ventromedial-dorsolateral axis becomes apparent as a function of epithelial distance from the perfusion pencil. (MP4 4957 kb)

Supplementary Video 2

See Supplementary Video 1 (MP4 6863 kb)

Supplementary Video 3

See Supplementary Video 1 (MP4 5959 kb)

Supplementary Video 4

Confocal time-lapse fluorescence imaging of [Ca2+]c responses in the mouse MOE. Coronal MOE slices are bulk loaded with a Ca2+-sensitive dye (fluo-4/AM; 2 μM) and monitored at high magnification. Here, single OSNs are readily discernible. Fluorescence frame sequences are merged with a 'static' confocal DIC image of the MOE area under investigation to show an anatomical reference. To provide a high contrast display of fluorescence changes, averaged 'baseline' images were subtracted from each original frame, thus generating a time-lapse movie in which only deviations from baseline fluorescence (ΔF) become discernible as pseudocolor intensity changes (red = elevated [Ca2+]c). Note, however, that unavoidable miniature movements of the slice (in the nanometer range) during the course of an experiment result in halo artifacts. These 'halos' stem from the subtraction of a 'baseline' image that is not perfectly congruent with a respective frame. Movies show (i) both odor- and K+-dependent [Ca2+]c signals (Video 4), or (ii) K+-triggered [Ca2+]c transients (Video 5) in single OSNs under control conditions. Brief odor stimulation triggers [Ca2+]c transients in a subpopulation of OSNs, whereas K+-mediated depolarization activates the majority of neurons. (MP4 684 kb)

Supplementary Video 5

See Supplementary Video 4 (MP4 747 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fluegge, D., Moeller, L., Cichy, A. et al. Mitochondrial Ca2+ mobilization is a key element in olfactory signaling. Nat Neurosci 15, 754–762 (2012). https://doi.org/10.1038/nn.3074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3074

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing