Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Serotonergic transcriptional networks and potential importance to mental health

Abstract

Transcription regulatory networks governing the genesis, maturation and maintenance of vertebrate brain serotonin (5-HT) neurons determine the level of serotonergic gene expression and signaling throughout an animal's lifespan. Recent studies suggest that alterations in these networks can cause behavioral and physiological pathogenesis in mice. Here, we synthesize findings from vertebrate loss-of-function and gain-of-function studies to build a new model of the transcriptional regulatory networks that specify 5-HT neurons during fetal life, integrate them into CNS circuitry in early postnatal life and maintain them in adulthood. We then describe findings from animal and human genetic studies that support possible alterations in the activity of serotonergic regulatory networks in the etiology of mental illness. We conclude with a discussion of the potential utility of our model, as an experimentally well-defined molecular pathway, to predict and interpret the biological effect of genetic variation that may be discovered in the orthologous human network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Serotonergic neuron identity.
Figure 2: Neuroanatomical features of 5-HT neuron development.
Figure 3: Serotonergic progenitor specification.
Figure 4: Serotonergic transcription regulatory network.

Similar content being viewed by others

References

  1. Gaddum, J.H. Drugs antagonistic to 5-hydroxytryptamine. in Ciba Foundation Symposium on Hypertension, 75–77 (Little, Brown and Co., 1954).

  2. Woolley, D.W. & Shaw, E. A biochemical and pharmacological suggestion about certain mental disorders. Proc. Natl. Acad. Sci. USA 40, 228–231 (1954).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Muller, C.P. & Jacobs, B.L. Handbook of the Behavioral Neurobiology of Serotonin (Academic Press, 2010).

  4. Ishimura, K. et al. Quantitative analysis of the distribution of serotonin-immunoreactive cell bodies in the mouse brain. Neurosci. Lett. 91, 265–270 (1988).

    CAS  PubMed  Google Scholar 

  5. Baker, K.G. et al. Cytoarchitecture of serotonin-synthesizing neurons in the pontine tegmentum of the human brain. Synapse 7, 301–320 (1991).

    CAS  PubMed  Google Scholar 

  6. Hornung, J.P. The human raphe nuclei and the serotonergic system. J. Chem. Neuroanat. 26, 331–343 (2003).

    CAS  PubMed  Google Scholar 

  7. Gaspar, P., Cases, O. & Maroteaux, L. The developmental role of serotonin: news from mouse molecular genetics. Nat. Rev. Neurosci. 4, 1002–1012 (2003).

    CAS  PubMed  Google Scholar 

  8. Goridis, C. & Rohrer, H. Specification of catecholaminergic and serotonergic neurons. Nat. Rev. Neurosci. 3, 531–541 (2002).

    CAS  PubMed  Google Scholar 

  9. Cordes, S.P. Molecular genetics of the early development of hindbrain serotonergic neurons. Clin. Genet. 68, 487–494 (2005).

    CAS  PubMed  Google Scholar 

  10. Scott, M.M. & Deneris, E.S. Making and breaking serotonin neurons and autism. Int. J. Dev. Neurosci. 23, 277–285 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez, S.P. & Gaspar, P. Investigating anxiety and depressive-like phenotypes in genetic mouse models of serotonin depletion. Neuropharmacology 62, 144–154 (2012).

    CAS  PubMed  Google Scholar 

  12. Kim, H. et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat. Med. 16, 804–808 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Flames, N. & Hobert, O. Transcriptional control of the terminal fate of monoaminergic neurons. Ann. Rev. Neurosci. 34, 153–184 (2011).

    CAS  PubMed  Google Scholar 

  14. Ben-Tabou de-Leon, S. & Davidson, E.H. Gene regulation: gene control network in development. Annu. Rev. Biophys. Biomol. Struct. 36, 191 (2007).

    CAS  PubMed  Google Scholar 

  15. Azmitia, E.C. & Gannon, P.J. The primate serotonergic system: a review of human and animal studies and a report on Macaca fascicularis. Adv. Neurol. 43, 407–468 (1986).

    CAS  PubMed  Google Scholar 

  16. Lidov, H.G.W. & Molliver, M.E. Immunohistochemical study of the development of serotonergic neurons in the rat CNS. Brain Res. Bull. 9, 559–604 (1982).

    CAS  PubMed  Google Scholar 

  17. Lillesaar, C., Tannhauser, B., Stigloher, C., Kremmer, E. & Bally-Cuif, L. The serotonergic phenotype is acquired by converging genetic mechanisms within the zebrafish central nervous system. Dev. Dyn. 236, 1072–1084 (2007).

    CAS  PubMed  Google Scholar 

  18. Wallace, J.A. & Lauder, J.M. Development of the serotonergic system in the rat embryo: an immunocytochemical study. Brain Res. Bull. 10, 459–479 (1983).

    CAS  PubMed  Google Scholar 

  19. Steinbusch, H.W.M. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6, 557–618 (1981).

    CAS  PubMed  Google Scholar 

  20. Jensen, P. et al. Redefining the serotonergic system by genetic lineage. Nat. Neurosci. 11, 417–419 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pattyn, A. et al. Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev. 17, 729–737 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lidov, H.G. & Molliver, M.E. An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields. Brain Res. Bull. 8, 389–430 (1982).

    CAS  PubMed  Google Scholar 

  23. Briscoe, J. et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic Hedgehog signaling. Nature 398, 622–627 (1999).

    CAS  PubMed  Google Scholar 

  24. Pattyn, A. et al. Ascl1/Mash1 is required for the development of central serotonergic neurons. Nat. Neurosci. 7, 589–595 (2004).

    CAS  PubMed  Google Scholar 

  25. Craven, S.E. et al. Gata2 specifies serotonergic neurons downstream of sonic hedgehog. Development 131, 1165–1173 (2004).

    CAS  PubMed  Google Scholar 

  26. Jacob, J. et al. Transcriptional repression coordinates the temporal switch from motor to serotonergic neurogenesis. Nat. Neurosci. 10, 1433–1439 (2007).

    CAS  PubMed  Google Scholar 

  27. Jacob, J. et al. Insm1 (IA-1) is an essential component of the regulatory network that specifies monoaminergic neuronal phenotypes in the vertebrate hindbrain. Development 136, 2477–2485 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. van Doorninck, J.H. et al. GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J. Neurosci. 19, RC12 (1999).

    CAS  PubMed  Google Scholar 

  29. Hendricks, T., Francis, N., Fyodorov, D. & Deneris, E. The ETS domain factor Pet-1 is an early and precise marker of central 5-HT neurons and interacts with a conserved element in serotonergic genes. J. Neurosci. 19, 10348–10356 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pfaar, H. et al. mPet-1, a mouse ETS-domain transcription factor, is expressed in central serotonergic neurons. Dev. Genes Evol. 212, 43–46 (2002).

    CAS  PubMed  Google Scholar 

  31. Cheng, L. et al. Lmx1b, Pet-1 and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype. J. Neurosci. 23, 9961–9967 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pattyn, A., Hirsch, M., Goridis, C. & Brunet, J.F. Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development 127, 1349–1358 (2000).

    CAS  PubMed  Google Scholar 

  33. Kaestner, K.H. The FoxA factors in organogenesis and differentiation. Curr. Opin. Genet. Dev. 20, 527–532 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hirsch, M.R., Tiveron, M.C., Guillemot, F., Brunet, J.F. & Goridis, C. Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 125, 599–608 (1998).

    CAS  PubMed  Google Scholar 

  35. Ding, Y.Q. et al. Lmx1b is essential for the development of serotonergic neurons. Nat. Neurosci. 6, 933–938 (2003).

    CAS  PubMed  Google Scholar 

  36. Tsai, F.Y. et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371, 221–226 (1994).

    CAS  PubMed  Google Scholar 

  37. Krueger, K.C. & Deneris, E.S. Serotonergic transcription of human FEV reveals direct GATA factor interactions and fate of Pet-1–deficient serotonin neuron precursors. J. Neurosci. 28, 12748–12758 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hobert, O., Carrera, I. & Stefanakis, N. The molecular and gene regulatory signature of a neuron. Trends Neurosci. 33, 435–445 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dai, J.X., Johnson, R.L. & Ding, Y.Q. Manifold functions of the Nail-Patella Syndrome gene Lmx1b in vertebrate development. Dev. Growth Differ. 51, 241–250 (2009).

    CAS  PubMed  Google Scholar 

  40. Zhao, Z.Q. et al. Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. J. Neurosci. 26, 12781–12788 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Osterberg, N. et al. Sim1 is a novel regulator in the differentiation of mouse dorsal raphe serotonergic neurons. PLoS ONE 6, e19239 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Demarque, M. & Spitzer, N.C. Activity-dependent expression of Lmx1b regulates specification of serotonergic neurons modulating swimming behavior. Neuron 67, 321–334 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, C. et al. Pet-1 is required across different stages of life to regulate serotonergic function. Nat. Neurosci. 13, 1190–1198 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lima, F.B. et al. Stress sensitive female macaques have decreased fifth Ewing variant (Fev) and serotonin-related gene expression that is not reversed by citalopram. Neuroscience 164, 676–691 (2009).

    CAS  PubMed  Google Scholar 

  45. Maurer, P. et al. The ETS transcription factor Fev is specifically expressed in the human central serotonergic neurons. Neurosci. Lett. 357, 215–218 (2004).

    CAS  PubMed  Google Scholar 

  46. Iyo, A.H., Porter, B., Deneris, E.S. & Austin, M.C. Regional distribution and cellular localization of the ETS-domain transcription factor, FEV, mRNA in the human postmortem brain. Synapse 57, 223–228 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hendricks, T.J. et al. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37, 233–247 (2003).

    CAS  PubMed  Google Scholar 

  48. Kiyasova, V. et al. A genetically defined morphologically and functionally unique subset of 5-HT neurons in the mouse raphe nuclei. J. Neurosci. 31, 2756–2768 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wylie, C.J. et al. Distinct transcriptomes define rostral and caudal serotonin neurons. J. Neurosci. 30, 670–684 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Scott, M.M. et al. A genetic approach to access serotonin neurons for in vivo and in vitro studies. Proc. Natl. Acad. Sci. USA 102, 16472–16477 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schmid, C., Schwarz, V. & Hutter, H. AST-1, a novel ETS-box transcription factor, controls axon guidance and pharynx development in C. elegans. Dev. Biol. 293, 403–413 (2006).

    CAS  PubMed  Google Scholar 

  52. Livet, J. et al. ETS gene PEA3 controls the central position and terminal arborization of specific motor neuron pools. Neuron 35, 877–892 (2002).

    CAS  PubMed  Google Scholar 

  53. Arber, S., Ladle, D.R., Lin, J.H., Frank, E. & Jessell, T.M. ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell 101, 485–498 (2000).

    CAS  PubMed  Google Scholar 

  54. Jacobsen, K.X., Czesak, M., Deria, M., Le Francois, B. & Albert, P.R. Region-specific regulation of 5-HT1A receptor expression by Pet-1–dependent mechanisms in vivo. J. Neurochem. 116, 1066–1076 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bonnin, A., Peng, W., Hewlett, W. & Levitt, P. Expression mapping of 5-HT1 serotonin receptor subtypes during fetal and early postnatal mouse forebrain development. Neuroscience 141, 781–794 (2006).

    CAS  PubMed  Google Scholar 

  56. Albert, P.R., Le Francois, B. & Millar, A.M. Transcriptional dysregulation of 5-HT1A autoreceptors in mental illness. Mol. Brain 4, 21 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Song, N.N. et al. Adult raphe-specific deletion of lmx1b leads to central serotonin deficiency. PLoS ONE 6, e15998 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Holmes, A. Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neurosci. Biobehav. Rev. 32, 1293–1314 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Waider, J., Araragi, N., Gutknecht, L. & Lesch, K.P. Tryptophan hydroxylase-2 (TPH2) in disorders of cognitive control and emotion regulation: a perspective. Psychoneuroendocrinology 36, 393–405 (2011).

    CAS  PubMed  Google Scholar 

  60. Murphy, D.L. et al. How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems. Neuropharmacology 55, 932–960 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Beaulieu, J.M. et al. Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency. Proc. Natl. Acad. Sci. USA 105, 1333–1338 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Richardson-Jones, J.W. et al. Serotonin-1A autoreceptors are necessary and sufficient for the normal formation of circuits underlying innate anxiety. J. Neurosci. 31, 6008–6018 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Alenina, N. et al. Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc. Natl. Acad. Sci. USA 106, 10332–10337 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hariri, A.R. & Holmes, A. Genetics of emotional regulation: the role of the serotonin transporter in neural function. Trends Cogn. Sci. 10, 182–191 (2006).

    PubMed  Google Scholar 

  65. Lesch, K.P. et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274, 1527–1531 (1996).

    CAS  PubMed  Google Scholar 

  66. Wendland, J.R. et al. A novel, putative gain-of-function haplotype at SLC6A4 associates with obsessive-compulsive disorder. Hum. Mol. Genet. 17, 717–723 (2008).

    CAS  PubMed  Google Scholar 

  67. Caspi, A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301, 386–389 (2003).

    CAS  PubMed  Google Scholar 

  68. Bennett, A.J. et al. Early experience and serotonin transporter gene variation interact to influence primate CNS function. Mol. Psychiatry 7, 118–122 (2002).

    CAS  PubMed  Google Scholar 

  69. Prasad, H.C. et al. Human serotonin transporter variants display altered sensitivity to protein kinase G and p38 mitogen-activated protein kinase. Proc. Natl. Acad. Sci. USA 102, 11545–11550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sutcliffe, J.S. et al. Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. Am. J. Hum. Genet. 77, 265–279 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Blakely, R.D. Overview: a rare opportunity or just one less reason to be depressed. Neuron 48, 701–702, author reply 705–706 (2005).

    CAS  PubMed  Google Scholar 

  72. Zhang, X. et al. Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45, 11–16 (2005).

    CAS  PubMed  Google Scholar 

  73. Jacobsen, J.P. et al. Deficient serotonin neurotransmission and depression-like serotonin biomarker alterations in tryptophan hydroxylase 2 (Tph2) loss-of-function mice. Mol. Psychiatry published online, doi: 10.1038/mp.2011.50 (3 May 2011).

    PubMed  Google Scholar 

  74. Bethea, C.L. et al. Effects of citalopram on serotonin and CRF systems in the midbrain of primates with differences in stress sensitivity. J. Chem. Neuroanat. 41, 200–218 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dai, J.X. et al. Enhanced contextual fear memory in central serotonin-deficient mice. Proc. Natl. Acad. Sci. USA 105, 11981–11986 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Erickson, J.T., Shafer, G., Rossetti, M.D., Wilson, C.G. & Deneris, E.S. Arrest of 5-HT neuron differentiation delays respiratory maturation and impairs neonatal homeostatic responses to environmental challenges. Respir. Physiol. Neurobiol. 159, 85–101 (2007).

    PubMed  PubMed Central  Google Scholar 

  77. Erickson, J.T. & Sposato, B.C. Autoresuscitation responses to hypoxia-induced apnea are delayed in newborn 5-HT–deficient Pet-1 homozygous mice. J. Appl. Physiol. 106, 1785–1792 (2009).

    PubMed  Google Scholar 

  78. Hodges, M.R., Best, S. & Richerson, G.B. Altered ventilatory and thermoregulatory control in male and female adult Pet-1 null mice. Respir. Physiol. Neurobiol. 177, 133–140 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hodges, M.R. et al. Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. J. Neurosci. 28, 2495–2505 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hodges, M.R., Wehner, M., Aungst, J., Smith, J.C. & Richerson, G.B. Transgenic mice lacking serotonin neurons have severe apnea and high mortality during development. J. Neurosci. 29, 10341–10349 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhao, Z.Q. et al. Mice lacking central serotonergic neurons show enhanced inflammatory pain and an impaired analgesic response to antidepressant drugs. J. Neurosci. 27, 6045–6053 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cummings, K.J. et al. Failed heart rate recovery at a critical age in 5-HT–deficient mice exposed to episodic anoxia: implications for SIDS. J. Appl. Physiol. 111, 825–833 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Cummings, K.J., Li, A., Deneris, E.S. & Nattie, E.E. Bradycardia in serotonin-deficient Pet-1−/− mice: influence of respiratory dysfunction and hyperthermia over the first two postnatal weeks. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1333–R1342 (2010).

    PubMed  PubMed Central  Google Scholar 

  84. Cummings, K.J., Li, A. & Nattie, E.E. Brainstem serotonin deficiency in the neonatal period: autonomic dysregulation during mild cold stress. J. Physiol. (Lond.) 589, 2055–2064 (2011).

    CAS  Google Scholar 

  85. Paulus, E.V. & Mintz, E.M. Developmental disruption of the serotonin system alters circadian rhythms. Physiol. Behav. 105, 257–263 (2012).

    CAS  PubMed  Google Scholar 

  86. Lerch-Haner, J.K., Frierson, D., Crawford, L.K., Beck, S.G. & Deneris, E.S. Serotonergic transcriptional programming determines maternal behavior and offspring survival. Nat. Neurosci. 11, 1001–1003 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Phillips, P.C. Epistasis: the essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 9, 855–867 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dreyer, S.D. et al. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat. Genet. 19, 47–50 (1998).

    CAS  PubMed  Google Scholar 

  89. Dunston, J.A. et al. The human LMX1B gene: transcription unit, promoter and pathogenic mutations. Genomics 84, 565–576 (2004).

    CAS  PubMed  Google Scholar 

  90. Chen, H. et al. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat. Genet. 19, 51–55 (1998).

    PubMed  Google Scholar 

  91. Vollrath, D. et al. Loss-of-function mutations in the LIM-homeodomain gene, LMX1B, in nail-patella syndrome. Hum. Mol. Genet. 7, 1091–1098 (1998).

    CAS  PubMed  Google Scholar 

  92. López-Arvizu, C. et al. Increased symptoms of attention deficit hyperactivity disorder and major depressive disorder symptoms in nail-patella syndrome: potential association with LMX1B loss-of-function. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 156B, 59–66 (2011).

    PubMed  Google Scholar 

  93. Deneris, E.S. Molecular genetics of mouse serotonin neurons across the lifespan. Neuroscience 197, 17–27 (2011).

    CAS  PubMed  Google Scholar 

  94. Cirulli, E.T. & Goldstein, D.B. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet. 11, 415–425 (2010).

    CAS  PubMed  Google Scholar 

  95. McClellan, J. & King, M.C. Genetic heterogeneity in human disease. Cell 141, 210–217 (2010).

    CAS  PubMed  Google Scholar 

  96. State, M.W. & Levitt, P. The conundrums of understanding genetic risks for autism spectrum disorders. Nat. Neurosci. 14, 1499–1506 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Dolmazon, V. et al. Forced expression of LIM homeodomain transcription factor 1b enhances differentiation of mouse embryonic stem cells into serotonergic neurons. Stem Cells Dev. 20, 301–311 (2010).

    PubMed  Google Scholar 

  98. Tokuyama, Y., Ingram, S.L., Woodward, J.S. & Bethea, C.L. Functional characterization of rhesus embryonic stem cell–derived serotonin neurons. Exp. Biol. Med. (Maywood) 235, 649–657 (2010).

    CAS  Google Scholar 

  99. Akil, H. et al. Medicine. The future of psychiatric research: genomes and neural circuits. Science 327, 1580–1581 (2010).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Blakely (Vanderbilt University) and E. Gilmore (Case Western Reserve University) for valuable discussions and critical comments on the manuscript. Research in the Deneris Lab is supported by grants RO1 MH062723 and the Vanderbilt/NIMH Silvio O Conte Center for Neuroscience Research, P50 MH078028 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan S Deneris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deneris, E., Wyler, S. Serotonergic transcriptional networks and potential importance to mental health. Nat Neurosci 15, 519–527 (2012). https://doi.org/10.1038/nn.3039

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3039

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing