Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease

Abstract

Continuous turnover of intracellular components by autophagy is necessary to preserve cellular homeostasis in all tissues. Alterations in macroautophagy, the main process responsible for bulk autophagic degradation, have been proposed to contribute to pathogenesis in Huntington's disease (HD), a genetic neurodegenerative disorder caused by an expanded polyglutamine tract in the huntingtin protein. However, the precise mechanism behind macroautophagy malfunction in HD is poorly understood. In this work, using cellular and mouse models of HD and cells from humans with HD, we have identified a primary defect in the ability of autophagic vacuoles to recognize cytosolic cargo in HD cells. Autophagic vacuoles form at normal or even enhanced rates in HD cells and are adequately eliminated by lysosomes, but they fail to efficiently trap cytosolic cargo in their lumen. We propose that inefficient engulfment of cytosolic components by autophagosomes is responsible for their slower turnover, functional decay and accumulation inside HD cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Autophagic activity is reduced in HD cells.
Figure 2: Formation and clearance of autophagic vacuoles is normal in HD cells.
Figure 3: Abnormalities in autophagic vacuoles in different HD cell types.
Figure 4: Altered composition of autophagy-related compartments in HD cells.
Figure 5: Altered properties of autophagy-related compartments in HD cells.
Figure 6: Distribution of htt and p62 in autophagic vacuoles.
Figure 7: Consequences of altered recognition of autophagic cargo in HD on cellular lipid content.
Figure 8: Altered mitochondrial turnover in HD cells.

Similar content being viewed by others

References

  1. Morimoto, R.I. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 22, 1427–1438 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Rubinsztein, D.C. Lessons from animal models of Huntington's disease. Trends Genet. 18, 202–209 (2002).

    Article  CAS  Google Scholar 

  3. Sarkar, S. & Rubinsztein, D.C. Huntington's disease: degradation of mutant huntingtin by autophagy. FEBS J. 275, 4263–4270 (2008).

    Article  CAS  Google Scholar 

  4. Shibata, M. et al. Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J. Biol. Chem. 281, 14474–14485 (2006).

    Article  CAS  Google Scholar 

  5. Jeong, H. et al. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 137, 60–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Iwata, A. et al. Intra-nuclear degradation of polyglutamine aggregates by the ubiquitin proteasome system. J. Biol. Chem. 284, 9796–9803 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Mizushima, N., Levine, B., Cuervo, A. & Klionsky, D. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Ravikumar, B., Duden, R. & Rubinsztein, D.C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11, 1107–1117 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Sarkar, S., Davies, J.E., Huang, Z., Tunnacliffe, A. & Rubinsztein, D.C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J. Biol. Chem. 282, 5641–5652 (2007).

    Article  CAS  Google Scholar 

  11. Kegel, K.B. et al. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J. Neurosci. 20, 7268–7278 (2000).

    Article  CAS  Google Scholar 

  12. Sapp, E. et al. Huntingtin localization in brains of normal and Huntington's disease patients. Ann. Neurol. 42, 604–612 (1997).

    Article  CAS  Google Scholar 

  13. Davies, S.W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997).

    Article  CAS  Google Scholar 

  14. Nagata, E., Sawa, A., Ross, C.A. & Snyder, S.H. Autophagosome-like vacuole formation in Huntington's disease lymphoblasts. Neuroreport 15, 1325–1328 (2004).

    Article  Google Scholar 

  15. Atwal, R.S. et al. Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum. Mol. Genet. 16, 2600–2615 (2007).

    Article  CAS  Google Scholar 

  16. Kim, J., Huang, W.P., Stromhaug, P.E. & Klionsky, D.J. Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J. Biol. Chem. 277, 763–773 (2002).

    Article  CAS  Google Scholar 

  17. Ravikumar, B., Imarisio, S., Sarkar, S., O'Kane, C.J. & Rubinsztein, D.C. Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J. Cell Sci. 121, 1649–1660 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Wheeler, V.C. et al. Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse. Hum. Mol. Genet. 8, 115–122 (1999).

    Article  CAS  Google Scholar 

  19. Klionsky, D.J., Cuervo, A.M. & Seglen, P.O Methods for monitoring autophagy from yeast to human. Autophagy 3, 181–206 (2007).

    Article  CAS  Google Scholar 

  20. Trettel, F. et al. Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum. Mol. Genet. 9, 2799–2809 (2000).

    Article  CAS  Google Scholar 

  21. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Marzella, L., Ahlberg, J. & Glaumann, H. Isolation of autophagic vacuoles from rat liver: morphological and biochemical characterization. J. Cell Biol. 93, 144–154 (1982).

    Article  CAS  Google Scholar 

  23. Kim, P.K., Hailey, D.W., Mullen, R.T. & Lippincott-Schwartz, J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl. Acad. Sci. USA 105, 20567–20574 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Filimonenko, M. et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179, 485–500 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Browne, S.E., Ferrante, R.J. & Beal, M.F. Oxidative stress in Huntington's disease. Brain Pathol. 9, 147–163 (1999).

    Article  CAS  Google Scholar 

  27. Larsen, K.E., Fon, E.A., Hastings, T.G., Edwards, R.H. & Sulzer, D. Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. J. Neurosci. 22, 8951–8960 (2002).

    Article  CAS  Google Scholar 

  28. Rubinsztein, D.C. et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 1, 11–22 (2005).

    Article  CAS  Google Scholar 

  29. Chu, C.T. et al. Autophagy in neurite injury and neurodegeneration: in vitro and in vivo models. Methods Enzymol. 453, 217–249 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y. et al. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum. Mol. Genet. 18, 4153–4170 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Cuervo, A.M., Stefanis, L., Fredenburg, R., Lansbury, P.T. & Sulzer, D. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Stefanis, L., Larsen, K., Rideout, H., Sulzer, D. & Greene, L. Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J. Neurosci. 21, 9549–9560 (2001).

    Article  CAS  Google Scholar 

  33. Yu, W.H. et al. Macroautophagy–a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J. Cell Biol. 171, 87–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Sulzer, D. et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc. Natl. Acad. Sci. USA 97, 11869–11874 (2000).

    Article  CAS  Google Scholar 

  35. Bae, B.I. et al. Mutant huntingtin: nuclear translocation and cytotoxicity mediated by GAPDH. Proc. Natl. Acad. Sci. USA 103, 3405–3409 (2006).

    Article  CAS  Google Scholar 

  36. Browne, S.E. Mitochondria and Huntington's disease pathogenesis: insight from genetic and chemical models. Ann. NY Acad. Sci. 1147, 358–382 (2008).

    Article  CAS  Google Scholar 

  37. Wang, H., Lim, P.J., Karbowski, M. & Monteiro, M.J. Effects of overexpression of huntingtin proteins on mitochondrial integrity. Hum. Mol. Genet. 18, 737–752 (2009).

    Article  CAS  Google Scholar 

  38. Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Martin-Aparicio, E. et al. Proteasomal-dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington's disease. J. Neurosci. 21, 8772–8781 (2001).

    Article  CAS  Google Scholar 

  40. Garfield, A.S. Derivation of primary mouse embryonic fibroblast (PMEF) cultures. Methods Mol. Biol. 633, 19–27 (2010).

    Article  CAS  Google Scholar 

  41. Petersen, A. et al. Expanded CAG repeats in exon 1 of the Huntington's disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum. Mol. Genet. 10, 1243–1254 (2001).

    Article  CAS  Google Scholar 

  42. Massey, A.C., Kaushik, S., Sovak, G., Kiffin, R. & Cuervo, A.M. Consequences of the selective blockage of chaperone-mediated autophagy. Proc. Natl. Acad. Sci. USA 103, 5805–5810 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Klionsky, D.J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151–175 (2008).

    Article  CAS  Google Scholar 

  44. Ohsumi, Y., Ishikawa, T. & Kato, K. A rapid and simplified method for the preparation of lysosomal membranes from rat liver. J. Biochem. 93, 547–556 (1983).

    CAS  Google Scholar 

  45. Storrie, B. & Madden, E. Isolation of subcellular organelles. Methods Enzymol. 182, 203–225 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Singh and B. Patel for technical assistance. Mouse fibroblasts expressing 146Q-htt exon 1 and human lymphoblasts from unaffected controls and individuals with HD were gifts from N. Wexler (Hereditary Disease Foundation), M. Andresen (Massachusetts Institute of Technology) and J. Gusella (Massachusetts General Hospital). The antibodies to mannose-6-phosphate receptor and Rab5 were a gift from A. Wolkoff (Albert Einstein College of Medicine). This work was supported by a Huntington Disease Society of America grant (D.S., A.M.C.); US National Institutes of Health National Institute on Aging grants AG021904, AG031782, DK041918 (A.M.C.) and National Institute of Neurological Disorders and Stroke Udall Center of Excellence grant (D.S.); and the Glenn Foundation (A.M.C.), and Picower and Simons foundation (D.S.). E.W. is supported by the Hereditary Disease Foundation. E.A. is supported by a Fulbright fellowship. S.K. is supported by US National Institutes of Health National Institute on Aging grant T32AG023475.

Author information

Authors and Affiliations

Authors

Contributions

M.M.-V., Z.T. and E.W. performed the experiments that constitute the main body of this work; R.d.V., H.K., S.K., E.A. and G.T. completed the rest of the experiments; S.H. analyzed the electron micrographs of lymphoblasts; A.M.C. and D.S. designed the study and wrote the paper.

Corresponding authors

Correspondence to David Sulzer or Ana Maria Cuervo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–21 and Supplementary Text (PDF 3527 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Vicente, M., Talloczy, Z., Wong, E. et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat Neurosci 13, 567–576 (2010). https://doi.org/10.1038/nn.2528

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2528

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing