Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Consequences of twenty-first-century policy for multi-millennial climate and sea-level change

Abstract

Most of the policy debate surrounding the actions needed to mitigate and adapt to anthropogenic climate change has been framed by observations of the past 150 years as well as climate and sea-level projections for the twenty-first century. The focus on this 250-year window, however, obscures some of the most profound problems associated with climate change. Here, we argue that the twentieth and twenty-first centuries, a period during which the overwhelming majority of human-caused carbon emissions are likely to occur, need to be placed into a long-term context that includes the past 20 millennia, when the last Ice Age ended and human civilization developed, and the next ten millennia, over which time the projected impacts of anthropogenic climate change will grow and persist. This long-term perspective illustrates that policy decisions made in the next few years to decades will have profound impacts on global climate, ecosystems and human societies — not just for this century, but for the next ten millennia and beyond.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Past and future changes in concentration of atmospheric carbon dioxide and global mean temperature.
Figure 2: Past and future changes in global mean sea level.
Figure 3: Maps of projected relative sea-level change at 10,000 years after 2000 AD.
Figure 4: Relation between future cumulative emissions and committed sea-level rise.
Figure 5: Populated areas affected by sea-level rise.
Figure 6: Projected submerged areas in heavily populated areas affected by sea-level rise.

References

  1. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  2. IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects (eds Field, C. B. et al.) 1132 (Cambridge Univ. Press, 2014).

  3. Williams, T. Climate Change Negotiations: The United Nations Framework Convention on Climate Change in Context Background Paper No. 2014-03-E (Library of Parliament, Ottawa, Canada, 2015).

    Google Scholar 

  4. Keeling, C. D. & Bacastow, R. B. in Energy and Climate: Studies in Geophysics 72–95 (National Academy of Sciences, 1977).

    Google Scholar 

  5. Walker, J. C. G. & Kasting, J. F. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 151–189 (1992).

    Article  CAS  Google Scholar 

  6. Archer, D., Kheshgi, H. & Maier-Reimer, E. Multiple timescales for neutralization of fossil fuel CO2 . Geophys. Res. Lett. 24, 405–408 (1997).

    Article  CAS  Google Scholar 

  7. Archer, D. Fate of fossil fuel CO2 in geologic time. J. Geophys. Res-Oceans 110, C09s05 (2005).

    Article  CAS  Google Scholar 

  8. Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37, 117–134 (2009).

    Article  CAS  Google Scholar 

  9. Archer, D. & Brovkin, V. The millennial atmospheric lifetime of anthropogenic CO2 . Climatic Change 90, 283–297 (2008).

    Article  CAS  Google Scholar 

  10. Lenton, T. M. et al. Millennial timescale carbon cycle and climate change in an efficient Earth system model. Clim. Dynam. 26, 687–711 (2006).

    Article  Google Scholar 

  11. Weaver, A. J., Zickfeld, K., Montenegro, A. & Eby, M. Long term climate implications of 2050 emission reduction targets. Geophys. Res. Lett. 34, L19703 (2007).

    Article  Google Scholar 

  12. Plattner, G. K. et al. Long-term climate commitments projected with climate-carbon cycle models. J. Clim. 21, 2721–2751 (2008).

    Article  Google Scholar 

  13. Solomon, S., Plattner, G. K., Knutti, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl Acad. Sci. USA 106, 1704–1709 (2009).

    Article  CAS  Google Scholar 

  14. Eby, M. et al. Lifetime of anthropogenic climate change: millennial time scales of potential CO2 and surface temperature perturbations. J. Clim. 22, 2501–2511 (2009).

    Article  Google Scholar 

  15. Friedlingstein, P. et al. Long-term climate implications of twenty-first century options for carbon dioxide emission mitigation. Nature Clim. Change 1, 457–461 (2011).

    Article  CAS  Google Scholar 

  16. Zickfeld, K. et al. Long-term climate change commitment and reversibility: an EMIC intercomparison. J. Clim. 26, 5782–5809 (2013).

    Article  Google Scholar 

  17. Hansen, J. et al. Climate response times — dependence on climate sensitivity and ocean mixing. Science 229, 857–859 (1985).

    Article  CAS  Google Scholar 

  18. Santer, B. D., Wigley, T. M. L., Barmett, T. P. & Anyamba, E. in Climate Change 1995: The Science of Climate Change (eds Houghton, J. T. et al.) 407–444 (Cambridge Univ. Press, 1995).

    Google Scholar 

  19. Wigley, T. M. L. Global mean temperature and sea-level consequences of greenhouse-gas concentration stabilization. Geophys. Res. Lett. 22, 45–48 (1995).

    Article  Google Scholar 

  20. Raper, S. C. B., Wigley, T. M. L. and Warrick, R. A. in Sea-Level Rise and Coastal Subsidence: Causes, Consequences and Strategies (eds Milliman, J. & Haq, B. U.) 11–45 (Kluwer Academic, 1996).

    Book  Google Scholar 

  21. Meehl, G. A. et al. How much more global warming and sea level rise? Science 307, 1769–1772 (2005).

    Article  CAS  Google Scholar 

  22. Wigley, T. M. L. The climate change commitment. Science 307, 1766–1769 (2005).

    Article  CAS  Google Scholar 

  23. Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

    Article  CAS  Google Scholar 

  24. Matthews, H. D., Solomon, S. & Pierrehumbert, R. Cumulative carbon as a policy framework for achieving climate stabilization. Phil. Trans. R. Soc. A 370, 4365–4379 (2012).

    Article  CAS  Google Scholar 

  25. Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (Cambridge Univ. Press, 2013).

    Google Scholar 

  26. Frame, D. J., Macey, A. H. & Allen, M. R. Cumulative emissions and climate policy. Nature Geosci. 7, 692–693 (2014).

    Article  CAS  Google Scholar 

  27. Friedlingstein, P. et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nature Geosci. 7, 709–715 (2014).

    Article  CAS  Google Scholar 

  28. IPCC Summary for Policymakers in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 3–29 (Cambridge Univ. Press, 2013).

  29. Solomon, S. et al. Climate Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennia (National Academies Press, 2011).

    Google Scholar 

  30. Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).

    Article  CAS  Google Scholar 

  31. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–55 (2012).

    Article  CAS  Google Scholar 

  32. Monnin, E. et al. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112–114 (2001).

    Article  CAS  Google Scholar 

  33. Parrenin, F. et al. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339, 1060–1063 (2013).

    Article  CAS  Google Scholar 

  34. Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014).

    Article  CAS  Google Scholar 

  35. Annan, J. D. & Hargreaves, J. C. A perspective on model-data surface temperature comparison at the Last Glacial Maximum. Quat. Sci. Rev. 107, 1–10 (2015).

    Article  Google Scholar 

  36. Lourantou, A., Chappellaz, J., Barnola, J. M., Masson-Delmotte, V. & Raynaud, D. Changes in atmospheric CO2 and its carbon isotopic ratio during the penultimate deglaciation. Quat. Sci. Rev. 29, 1993–1992 (2010).

    Article  Google Scholar 

  37. Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 159–254 (Cambridge Univ. Press, 2013).

    Google Scholar 

  38. Weaver, A. J. et al. The UVic Earth System Climate Model: model description, climatology and application to past, present and future climates. Atmos. Ocean 39, 361–428 (2001).

    Article  Google Scholar 

  39. Ritz, S. P., Stocker, T. F. & Joos, F. A coupled dynamical ocean-energy balance atmosphere model for paleoclimate studies. J. Clim. 24, 349–375 (2011).

    Article  Google Scholar 

  40. Flato, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 741–866 (Cambridge Univ. Press, 2013).

    Google Scholar 

  41. Charney, J. G. Carbon Dioxide and Climate: A Scientific Assessment (National Academies of Science Press, 1979).

    Google Scholar 

  42. Rogner, H. et al. in Global Energy Assessment—Toward a Sustainable Future (ed. GEA Writing Team) 423–512 (Cambridge Univ. Press, 2012).

    Google Scholar 

  43. Peters, G. P. et al. The challenge to keep global warming below 2 °C. Nature Clim. Change 3, 4–6 (2013).

    Article  Google Scholar 

  44. Le Quere, C. et al. Global carbon budget 2014. Earth Syst. Sci. Data 7, 47–85 (2015).

    Article  Google Scholar 

  45. Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    Article  CAS  Google Scholar 

  46. Randalls, S. History of the 2 °C climate target. WIREs Clim. Change 1, 598–605 (2010).

    Article  Google Scholar 

  47. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    Article  CAS  Google Scholar 

  48. Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1137–1216 (Cambridge Univ. Press, 2013).

    Google Scholar 

  49. Bryan, K., Komro, F. G., Manabe, S. & Spelman, M. J. Transient climate response to increasing atmospheric carbon dioxide. Science 215, 56–58 (1982).

    Article  CAS  Google Scholar 

  50. Siegenthaler, U. & Oeschger, H. Transient temperature changes due to increasing CO2 using simple models. Ann. Glaciol. 5, 153–159 (1984).

    Article  Google Scholar 

  51. Stouffer, R. J. Time scales of climate response. J. Clim. 17, 209–217 (2004).

    Article  Google Scholar 

  52. Wunsch, C. & Stammer, D. Atmospheric loading and the oceanic “inverted barometer” effect. Rev. Geophys. 35, 79–107 (1997).

    Article  Google Scholar 

  53. Stammer, D. Response of the global ocean to Greenland and Antarctic ice melting. J. Geophys. Res-Oceans 113, C06022 (2008).

    Article  Google Scholar 

  54. Levermann, A., Griesel, A., Hofmann, M., Montoya, M. & Rahmstorf, S. Dynamic sea level changes following changes in the thermohaline circulation. Clim. Dynam. 24, 347–354 (2005).

    Article  Google Scholar 

  55. Mikolajewicz, U., Santer, B. D. & Maier-Reimer, E. Ocean response to greenhouse warming. Nature 345, 589–593 (1990).

    Article  Google Scholar 

  56. Mitrovica, J. X., Tamisiea, M. E., Davis, J. L. & Milne, G. A. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409, 1026–1029 (2001).

    Article  CAS  Google Scholar 

  57. Kendall, R. A., Mitrovica, J. X. & Milne, G. A. On post-glacial sea level — II. Numerical formulation and comparative results on spherically symmetric models. Geophys. J. Int. 161, 679–706 (2005).

    Article  Google Scholar 

  58. Gomez, N., Mitrovica, J. X., Tamisiea, M. E. & Clark, P. U. A new projection of sea level change in response to collapse of marine sectors of the Antarctic Ice Sheet. Geophys. J. Int. 180, 623–634 (2010).

    Article  Google Scholar 

  59. Lambeck, K. et al. in Understanding Sea-Level Rise and Variability (eds Church, J. A. et al.) 61–121 (Wiley-Blackwell, 2010).

    Book  Google Scholar 

  60. Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    Article  CAS  Google Scholar 

  61. He, F. et al. Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation. Nature 494, 81–85 (2013).

    Article  CAS  Google Scholar 

  62. Abe-Ouchi, A. et al. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature 500, 190–193 (2013).

    Article  CAS  Google Scholar 

  63. Levermann, A. et al. The multimillennial sea-level commitment of global warming. Proc. Natl Acad. Sci. USA 110, 13745–13750 (2013).

    Article  CAS  Google Scholar 

  64. Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 383–464 (Cambridge Univ. Press, 2013).

    Google Scholar 

  65. Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science http://dx.doi.org/10.1126/science.aaa4019 (2015).

  66. Marzeion, B., Jarosch, A. H. & Hofer, M. Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 6, 1295–1322 (2012).

    Article  Google Scholar 

  67. Vaughan, D. G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 317–382 (Cambridge Univ. Press, 2013).

    Google Scholar 

  68. Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nature Clim. Change 2, 429–432 (2012).

    Article  Google Scholar 

  69. Winkelmann, R., Levermann, A., Ridgwell, A. & Caldeira, K. Combustion of available fossil-fuel resources sufficient to eliminate the Antarctic Ice Sheet. Sci. Adv. 1, e1500589 (2015).

    Article  CAS  Google Scholar 

  70. Mengel, M. & Levermann, A. Ice plug prevents irreversible discharge from East Antarctica. Nature Clim. Change 4, 451–455 (2014).

    Article  Google Scholar 

  71. Weertman, J. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 3–11 (1974).

    Article  Google Scholar 

  72. Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).

    Article  Google Scholar 

  73. Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for the Thwaites Glacier basin, West Antarctica. Science 344, 735–738 (2014).

    Article  CAS  Google Scholar 

  74. Favier, L. et al. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nature Clim. Change 4, 117–121 (2014).

    Article  Google Scholar 

  75. Held, I. M. et al. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. J. Clim. 23, 2418–2427 (2010).

    Article  Google Scholar 

  76. Farrell, W. E. & Clark, J. A. Postglacial sea level. Geophys. J. R. Astron. Soc. 46, 647–667 (1976).

    Article  Google Scholar 

  77. Milne, G. A. & Mitrovica, J. X. Postglacial sea-level change on a rotating Earth. Geophys. J. Int. 133, 1–19 (1998).

    Article  Google Scholar 

  78. Mitrovica, J. X. & Milne, G. A. On the origin of late Holocene sea-level highstands within equatorial ocean basins. Quat. Sci. Rev. 21, 2179–2190 (2002).

    Article  Google Scholar 

  79. Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 465–570 (Cambridge Univ. Press, 2013).

    Google Scholar 

  80. Marzeion, B. & Levermann, A. Loss of cultural world heritage and currently inhabited places to sea-level rise. Environ. Res. Lett. 9, 034001 (2014).

    Article  Google Scholar 

  81. Nordhaus, W. The Climate Casino: Risk, Uncertainty, and Economics for a Warming World (Yale Univ. Press, 2013).

    Google Scholar 

  82. Arrow, K. et al. Determining benefits and costs for future generations. Science 341, 349–350 (2013).

    Article  CAS  Google Scholar 

  83. King, D., Schrag, D., Dadi, Z., Ye, Q. & Ghosh, A. Climate Change: A Risk Assessment (Univ. Cambridge, Centre for Science and Policy, 2015).

    Google Scholar 

  84. Committee on Geoengineering Climate Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration (National Academies Press, 2015).

  85. Committee on Geoengineering Climate Climate Intervention: Reflecting Sunlight to Cool Earth (National Academies Press, 2015).

  86. Bruckner, T. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 511–596 (Cambridge Univ. Press, 2014).

    Google Scholar 

  87. Alder, J., Hostetler, S. & Williams, D. An interactive web application for visualizing climate data. EOS 94, 197–198 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

P.U.C. and A.C.M. acknowledge support from the US National Science Foundation (Project PALEOVAR; AGS-0602395). M.E. and A.J.W. are grateful for ongoing support from the Natural Sciences and Engineering Research Council of Cananda (NSERC) through its Discovery Grant programme. G.A.M. acknowledges support from the Natural Sciences and Engineering Research Council of Canada and the Canada Research Chairs Program. A.L. acknowledges support from the German Science Foundation (DFG) project GZ: LE 1448/6-1. S.A.M. acknowledges support from the University of Wisconsin-Madison Graduate School. R.T.P. acknowledges support from the Kung Carl XVI Gustaf 50-Årsfond. B.D.S. was supported by the US Department of Energy under contract DE-AC52-07NA27344. T.F.S. and P.L.P. acknowledge support from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

P.U.C., S.A.M., A.C.M., and J.D.S. conceived the study. P.U.C. and M.E. designed and led the study, and with A.L., S.A.M., B.D.S., D.P.S., T.F.S., A.J.W., and R.W. wrote the first draft of the paper. M.E. and P.L.P. contributed the carbon cycle and climate modelling, A.L. and R.W. contributed the glacier and ice-sheet modelling, G.A.M. contributed the relative sea-level modelling, and S.K. and B.H.S. contributed the sea-level impact analyses. All authors contributed to the analysis and finalization of the paper.

Corresponding author

Correspondence to Peter U. Clark.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4565 kb)

Supplementary Information

Data used in Figs 1, 2 and 4, as well as Supplementary Figs 1 and 3. (XLSX 32469 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, P., Shakun, J., Marcott, S. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nature Clim Change 6, 360–369 (2016). https://doi.org/10.1038/nclimate2923

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2923

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing