Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fifteen years of ocean observations with the global Argo array

Abstract

More than 90% of the heat energy accumulation in the climate system between 1971 and the present has been in the ocean. Thus, the ocean plays a crucial role in determining the climate of the planet. Observing the oceans is problematic even under the most favourable of conditions. Historically, shipboard ocean sampling has left vast expanses, particularly in the Southern Ocean, unobserved for long periods of time. Within the past 15 years, with the advent of the global Argo array of profiling floats, it has become possible to sample the upper 2,000 m of the ocean globally and uniformly in space and time. The primary goal of Argo is to create a systematic global network of profiling floats that can be integrated with other elements of the Global Ocean Observing System. The network provides freely available temperature and salinity data from the upper 2,000 m of the ocean with global coverage. The data are available within 24 hours of collection for use in a broad range of applications that focus on examining climate-relevant variability on seasonal to decadal timescales, multidecadal climate change, improved initialization of coupled ocean–atmosphere climate models and constraining ocean analysis and forecasting systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The typical cycle of an Argo float.
Figure 2: The sampling density of profiles reported by Argo floats.
Figure 3: Mean temperature over the period 2004–2010 in the global ocean.
Figure 4: Convection in the Labrador Sea.
Figure 5: Argo estimates of global heat content.

References

  1. Argo Science Team On the Design and Implementation of Argo – An Initial Plan for a Global Array of Profiling Floats ICPO Report No.21 (GODAE International Project office, Bureau of Meteorology, 1998).

  2. Intergovernmental Oceanographic Commission Toward a Global Ocean Observing System: the Approach to GOOS IOC-XVII/8 (UNESCO, 1993).

  3. Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L.) 151 (IPCC, 2014).

  4. Climate Change 2007: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Reisinger, A.) (IPCC, 2007).

  5. Wong, A. & Riser, S. Profiling float observations of the upper ocean under sea ice off the Wilkes Land coast of Antarctica. J. Phys. Oceanogr. 41, 1102–1115 (2011).

    Article  Google Scholar 

  6. Wong, A. & Riser, S. Modified shelf water on the continental slope north of Mac Robertson Land, East Antarctica. Geophys. Res. Lett. 40, 6186–6190 (2013).

    Article  Google Scholar 

  7. Wong, A., Johnson G. & Owens, W. B. Delayed-mode calibration of autonomous CTD profiling float salinity data by theta-S climatology. J. Atmos. Ocean. Technol. 20, 308–318 (2003).

    Article  Google Scholar 

  8. Owens, W. B. & Wong, A. An improved calibration method for the drift of the conductivity sensor on autonomous CTD profiling floats by theta-S climatology, Deep-Sea Res. Pt I 56, 450–457 (2009).

    Article  CAS  Google Scholar 

  9. Gaillard, F. et al. Quality Control of Large Argo Datasets. J. Atmos. Ocean. Technol. 26, 337–351 (2009).

    Article  Google Scholar 

  10. Levitus, S. Climatological Atlas of the World Ocean NOAA Professional Paper 13 (US Government Printing Office, 1982).

    Google Scholar 

  11. von Schuckmann, K., Gaillard, F. & Le Traon, P.-Y. Global hydrographic variability patterns during 2003–2008. J. Geophys. Res. 114, C09007 (2009).

    Article  Google Scholar 

  12. Ollitrault, M. & Rannou, J.-P. ANDRO: An Argo-based deep displacement dataset. J. Atmos. Ocean. Technol. 30, 759–788 (2013).

    Article  Google Scholar 

  13. Ollitrault, M. & De Verdiere, C. The ocean general circulation near 1000 m depth. J. Phys. Oceanogr. 44, 384–409 (2014).

    Article  Google Scholar 

  14. Gray, A. & Riser, S. A global analysis of Sverdrup balance using absolute geostrophic velocities from Argo. J. Phys. Oceanogr. 44, 1213–1229 (2014).

    Article  Google Scholar 

  15. Castelao, R. Mesoscale eddies in the South Atlantic Bight and the Gulf Stream recirculation region: vertical structure. J. Geophys. Res. 119, 2048–2065 (2014).

    Article  Google Scholar 

  16. Zhang, Z., Wang, W. & Qiu, B. Oceanic mass transport by mesoscale eddies. Science 345, 322–324 (2014).

    Article  CAS  Google Scholar 

  17. Hennon, T., Riser, S. & Alford, M. Observations of internal gravity waves from Argo floats. J. Phys. Oceanogr. 44, 2370–2386 (2014).

    Article  Google Scholar 

  18. Mercier, H. et al. Variability of the meridional overturning circulation at the Greenland--Portugal OVIDE section from 1993 to 2010. Progr. Oceanogr. 132, 250–261 (2015).

    Article  Google Scholar 

  19. Guinehut, S., Dhomps A., Larnicol, G. & Le Traon, P.-Y. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Sci. 68, 845–857 (2012).

    Article  Google Scholar 

  20. Willis, J. K. & Fu, L.-L. Combining altimeter and subsurface float data to estimate the timeaveraged circulation in the upper ocean. J. Geophys. Res. 113, C12017 (2008).

    Article  Google Scholar 

  21. Willis, J. K. Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? Geophys. Res. Lett. 37, L06602 (2010).

    Article  Google Scholar 

  22. Chang, Y., Zhang, S., Rosati, A., Delworth, T. & Stern, W. An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Clim. Dynam. 40, 775–803 (2013).

    Article  Google Scholar 

  23. Roemmich, D, Gould, W. J. & Gilson, J. 135 years of global ocean warming between the Challenger expedition and the Argo Programme. Nature Clim. Change 2, 425–428 (2012).

    Article  Google Scholar 

  24. Hobbs, W. & Willis, J. Detection of an observed 135 year ocean temperature change from limited data. Geophys. Res. Lett. 40, 2252–2258 (2013).

    Article  Google Scholar 

  25. Levitus, S. et al. Anthropogenic warming of earth's climate system. Science 292, 267–270 (2001).

    Article  CAS  Google Scholar 

  26. Roemmich, D & Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Progr. Oceanogr. 82, 81–100 (2009).

    Article  Google Scholar 

  27. Roemmich, D. et al. Unabated planetary warming and its anatomy since 2006. Nature Clim. Change 5, 240–245 (2015).

    Article  Google Scholar 

  28. Durack, P. & Wijffels, S. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Clim. 23, 4342–4362 (2010).

    Article  Google Scholar 

  29. Hosoda, S., Suga, T., Shikama, N. & Mizuno, K. Global surface layer salinity change detected by Argo and its implication for hydrological cycle intensification. J. Oceanogr. 65, 579–586 (2009).

    Article  CAS  Google Scholar 

  30. Durack, P., Wijffels, S. & Matear, R. Ocean salinities reveal strong global water cycle intensification during 1950–2000 Science 336, 455–458 (2012).

    Article  CAS  Google Scholar 

  31. Manabe, S. & Stouffer, R. Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide. J. Clim. 7, 5–23 (1994).

    Article  Google Scholar 

  32. Yashayaev, I. & and Loder, J. Enhanced production of Labrador Sea Water in 2008. Geophys. Res. Lett. 36, L01606 (2009).

    Article  Google Scholar 

  33. Kieke, D., Yashayaev, I. Studies of Labrador Sea Water formation and variability in the subpolar North Atlantic in the light of international partnership and collaboration. Prog. Oceanogr. 132, 220–232 (2015).

    Article  Google Scholar 

  34. Ren, L. & Riser, S. Seasonal salt budget in the northeast Pacific Ocean. J. Geophys. Res. 114, C12004 (2009).

    Article  Google Scholar 

  35. Ren, L. & Riser, S. Observations of decadal-scale salinity changes in the thermocline of the North Pacific Ocean. Deep Sea Res. Pt II 57, 1161–1170 (2010).

    Article  CAS  Google Scholar 

  36. Freeland, H. Evidence of change in the winter mixed layer in the Northeast Pacific Ocean: a problem revisited. Atmos. Ocean, 51, 126–133 (2013).

    Article  CAS  Google Scholar 

  37. Hansen, J., Lacis, A. & Rind, D. in Proc. Third Symp. Coast. Ocean Manage. (eds Magoon, O. T & Converse, H.) 2796–2810 (ASCE, 1984).

    Google Scholar 

  38. Palmer, M., McNeall, D. & Dunstone, N. Importance of the deep ocean for estimating decadal changes in Earth's radiation balance. Geophys. Res. Lett. 38, L13707 (2011).

    Article  Google Scholar 

  39. Rhein, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. et al.) Ch. 3 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  40. Sutton, P. & Roemmich, D. Decadal steric and sea surface height changes in the Southern Hemisphere. Geophys. Res. Lett. 38, L08604 (2011).

    Article  Google Scholar 

  41. Kosaka, Y. & and Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    Article  CAS  Google Scholar 

  42. Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2,000 m), 1955–2010. Geophys. Res. Lett. 39, L10603 (2012).

    Article  Google Scholar 

  43. Durack, P., Gleckler, P., Landerer, F. & Taylor, K. Quantifying underestimates of long-term upper ocean warming. Nature Clim. Change 4, 999–1005 (2014).

    Article  Google Scholar 

  44. Freeland, H. et al. Argo-a decade of progress. In Proc. Ocean Obs'09 Vol. 2, WPP-306 10.5270/OceanObs09.cwp.32 (ESA, 2010).

    Google Scholar 

  45. Kwon, Y.-O. et al. Role of Gulf Stream, Kuroshio-Oyashio, and their extensions in large-scale atmosphere-ocean interaction: a review. J. Clim. 23, 3249–3281 (2010).

    Article  Google Scholar 

  46. Saji, N., Goswami, B., Vinayachandran, P. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    CAS  Google Scholar 

  47. Klatt, O., Boebel, O. & Fahrbach, E. A profiling float's sense of ice. J. Atmos. Technol. 24, 1301–1308 (2007).

    Article  Google Scholar 

  48. Johnson, K. et al. Observing biogeochemical cycles at global scales with profiling floats and gliders: prospects for a global array. Oceanography 22, 216–225 (2009).

    Article  Google Scholar 

  49. Brasseur, P. et al. Integrating biogeochemistry and ecology into ocean data assimilation systems. Oceanography 22, 206–215 (2009).

    Article  Google Scholar 

  50. Bio-Optical Sensors on Argo Floats IOCCG Report No. 11 (eds Claustre, H.) (IOCCG, 2011).

  51. Frolicher, T. et al. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Clim. 28 862–886 (2015).

    Article  Google Scholar 

  52. Morrison, A., Frolicher, T. & Sarmiento, J. Upwelling in the Southern Ocean. Phys. Today 68, 27–29 (2015).

    Article  Google Scholar 

  53. Fukasawa, M. et al. Bottom water warming in the North Pacific Ocean. Nature 427, 825–827 (2004).

    Article  CAS  Google Scholar 

  54. Johnson, G., Purkey, S. & Bullister, J. Warming and freshening in the abyssal southeastern Indian Ocean. J. Clim. 21, 5351–5363 (2008).

    Article  Google Scholar 

  55. Purkey, S. & Johnson, G. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6353 (2010).

    Article  Google Scholar 

  56. Purkey, S. & Johnson, G. Antarctic Bottom Water warming and freshening: contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Clim. 26, 6105–6122 (2013).

    Article  Google Scholar 

  57. Argo Science Team Argo Float Data and Metadata from Global Data Assembly Centre (Argo GDAC) - Snapshot of Argo GDAC as of September, 8th 2015 (Ifremer, 2015); http://dx.doi.org/10.12770/ca035889-880d-463e-a523-10aabc3d6be3

  58. Boyer, T. et al. World Ocean Database 2009 NOAA Atlas NESDIS (ed. Levitus, S.) 66 (US Government Printing Office, 2009).

    Google Scholar 

Download references

Acknowledgements

Argo data were collected and made freely available by the International Argo Programme and the national programmes that contribute to it. The Argo Programme is part of the Global Ocean Observing System. Thanks to Igor Yashayaev for constructing Fig. 4 as his contribution to the Atlantic Zone Off-Shelf Monitoring Program (led by the Department of Fisheries and Oceans, Canada) and to the International Argo Programme.

Author information

Authors and Affiliations

Authors

Contributions

The paper was written by S.C.R. (60%) and H.J.F. (40%), with editorial comments and suggestions provided by the remaining co-authors who have all served as members of the Argo Steering Team and so have contributed significantly to the Argo programme.

Corresponding author

Correspondence to Howard J. Freeland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riser, S., Freeland, H., Roemmich, D. et al. Fifteen years of ocean observations with the global Argo array. Nature Clim Change 6, 145–153 (2016). https://doi.org/10.1038/nclimate2872

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2872

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing