Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

ENSO and greenhouse warming

Abstract

The El Niño/Southern Oscillation (ENSO) is the dominant climate phenomenon affecting extreme weather conditions worldwide. Its response to greenhouse warming has challenged scientists for decades, despite model agreement on projected changes in mean state. Recent studies have provided new insights into the elusive links between changes in ENSO and in the mean state of the Pacific climate. The projected slow-down in Walker circulation is expected to weaken equatorial Pacific Ocean currents, boosting the occurrences of eastward-propagating warm surface anomalies that characterize observed extreme El Niño events. Accelerated equatorial Pacific warming, particularly in the east, is expected to induce extreme rainfall in the eastern equatorial Pacific and extreme equatorward swings of the Pacific convergence zones, both of which are features of extreme El Niño. The frequency of extreme La Niña is also expected to increase in response to more extreme El Niños, an accelerated maritime continent warming and surface-intensified ocean warming. ENSO-related catastrophic weather events are thus likely to occur more frequently with unabated greenhouse-gas emissions. But model biases and recent observed strengthening of the Walker circulation highlight the need for further testing as new models, observations and insights become available.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observed ENSO asymmetry.
Figure 2: Greenhouse-warming-induced changes in ENSO properties.
Figure 3: Greenhouse-warming-induced changes in climate extremes.
Figure 4: Greenhouse-warming-induced change in rainfall response to Niño3 and Niño4 SST anomalies.

Similar content being viewed by others

References

  1. McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in Earth science. Science 314, 1740–1745 (2006).

    Article  CAS  Google Scholar 

  2. Neelin, J. D. et al. ENSO theory. J. Geophys. Res. 103, 14261–14290 (1998).

    Article  Google Scholar 

  3. Jin, F.-F. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci. 54, 811–829 (1997).

    Article  Google Scholar 

  4. Sun, D.-Z. El Niño: a coupled response to radiative heating? Geophys. Res. Lett. 24, 2031–2034 (1997).

    Article  Google Scholar 

  5. Ropelewski, C. F. & Halpert, M. S. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Weath. Rev. 115, 1606–1626 (1987).

    Article  Google Scholar 

  6. Philander, S. G. H. Anomalous El Niño of 1982–83. Nature 305, 16 (1983).

    Article  Google Scholar 

  7. Bove, M. C., O'Brien, J. J., Eisner, J. B., Landsea, C. W. & Niu, X. Effect of El Niño on US landfalling hurricanes, revisited. Bull. Am. Meteorol. Soc. 79, 2477–2482 (1998).

    Article  Google Scholar 

  8. McPhaden, M. J. El Niño: The child prodigy of 1997–98. Nature 398, 559–562 (1999).

    Article  CAS  Google Scholar 

  9. Wu, M. C., Chang, W. L. & Leung, W. M. Impact of El Niño–Southern Oscillation Events on tropical cyclone landfalling activities in the western North Pacific. J. Clim. 17, 1419–1428 (2004).

    Article  Google Scholar 

  10. Cai, W. et al. More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature 488, 365–369 (2012).

    Article  CAS  Google Scholar 

  11. Glynn, P. W. & de Weerdt, W. H. Elimination of two reef-building hydrocorals following the 1982–83 El Niño. Science 253, 69–71 (1991).

    Article  CAS  Google Scholar 

  12. Bell, G. D. et al. Climate assessment for 1998. Bull. Am. Meteorol. Soc. 80, 1040–1040 (1999).

    Article  Google Scholar 

  13. McPhaden, M. J. & Zhang, X. Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys. Res. Lett. 36, L13703 (2009).

    Article  Google Scholar 

  14. Santoso, A. et al. Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature 504, 126–130 (2013).

    Article  CAS  Google Scholar 

  15. Valle, C. A. et al. The impact of the 1982–1983 E1 Niño–Southern Oscillation on seabirds in the Galapagos Islands, Ecuador. J. Geophys. Res. 92, 14437–14444 (1987).

    Article  Google Scholar 

  16. Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci. 3, 391–397 (2010).

    Article  CAS  Google Scholar 

  17. DiNezio, P. N. et al. Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Clim. 25, 7399–7420 (2012).

    Article  Google Scholar 

  18. Kim, S.-T. et al. Response of El Niño sea surface temperature variability to greenhouse warming. Nature Clim. Change 4, 786–790 (2014).

    Article  Google Scholar 

  19. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  20. Kug, J.-S., Ham, Y.-G., Lee, J.-Y. & Jin, F.-F. Improved simulation of two types of El Niño in CMIP5 models. Environ. Res. Lett. 7, 034002 (2012).

    Article  Google Scholar 

  21. Bellenger, H. et al. ENSO representation in climate models: From CMIP3 to CMIP5. Clim. Dynam. 42, 1999–2018 (2014).

    Article  Google Scholar 

  22. Hoerling, M. P., Kumar, A. & Zhong, M. El Niño, La Niña, and the nonlinearity of their teleconnections. J. Clim. 10, 1769–1786 (1997).

    Article  Google Scholar 

  23. Rodgers, K. B., Friederichs, P. & Latif, M. Tropical pacific decadal variability and its relation to decadal modulations of ENSO. J. Clim. 17, 3761–3774 (2004).

    Article  Google Scholar 

  24. Yu, J.-Y. & Kim, S. T. Reversed spatial asymmetries between El Niño and La Niña and their linkage to decadal ENSO modulation in CMIP3 models. J. Clim. 24, 5423–5434 (2011).

    Article  Google Scholar 

  25. Takahashi, K., Montecinos, A., Goubanova, K. & Dewitte, B. ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, L10704 (2011). Proposes that the first two empirical orthogonal function modes of tropical Pacific sea surface temperature anomalies do not describe different phenomena (that is, El Niño–Southern Oscillation and 'El Niño Modoki') but rather the nonlinear evolution of ENSO.

    Article  Google Scholar 

  26. Takahashi, K. & Dewitte, B. Strong and moderate nonlinear El Niño regimes. Clim. Dynam. http://dx.doi.org/10.1007/s00382-015-2665-3 (2015).

  27. Choi, K.-Y., Vecchi, G. A. & Wittenberg, A. T. ENSO transition, duration, and amplitude asymmetries: role of the nonlinear wind stress coupling in a conceptual model. J. Clim. 26, 9462–9476 (2013).

    Article  Google Scholar 

  28. Timmermann, A. & Jin, F.-F. A nonlinear theory for El Niño bursting. J. Atmos. Sci. 60, 152–165 (2003).

    Article  Google Scholar 

  29. An, S.-I. & Jin, F.-F. Nonlinearity and asymmetry of ENSO. J. Clim. 17, 2399–2412 (2004).

    Article  Google Scholar 

  30. Hong, L.-C., LinHo & Jin, F.-F. A Southern Hemisphere booster of super El Niño. Geophys. Res. Lett. 41, 2142–2149 (2014). Shows that preceding a super El Niño event is a transverse circulation characterized by a low-level equatorward flow, which spins off from a high sea-level-pressure anomaly around Australia and merges into the deep convection anomalies over the central Pacific, with westerly anomalies that reinforce the El Niño.

    Article  Google Scholar 

  31. Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Clim. Change 4, 111–116 (2014).

    Article  CAS  Google Scholar 

  32. Cai, W. et al. More frequent extreme La Niña events under greenhouse warming. Nature Clim. Change 5, 132–137 (2015). Proposes that to examine dynamics associated with extreme La Niña, Niño4 surface temperature is a more appropriate index.

    Article  Google Scholar 

  33. Capotondi, A. et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 96, 921–938 (2015). Uses observations, ocean reanalysis and climate models to provide a comprehensive review of dynamics associated with different ENSO types, and to show that the basic physical processes underlying the different ENSO types are not completely distinct.

    Article  Google Scholar 

  34. Kao, H. Y. & Yu, J. Y. Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J. Clim. 22, 615–632 (2009).

    Article  Google Scholar 

  35. Yeh, S.-W. et al. El Niño in a changing climate. Nature 461, 511–514 (2009).

    Article  CAS  Google Scholar 

  36. Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112, C11007 (2007). Suggests that El Niño Modoki, with an anomaly centre in the central equatorial Pacific, is a different type of event independent from the canonical El Niño, which has an anomaly centre in the eastern equatorial Pacific.

    Article  Google Scholar 

  37. Hua, L., Yu, Y. & D.-Z. Sun, D.-Z. A further study of ENSO rectification: Results from an OGCM with a seasonal cycle. J. Clim. 28, 1362–1382 (2015). Shows that the rectification effect of ENSO is to cool the western Pacific warm pool and warm the eastern equatorial Pacific.

    Article  Google Scholar 

  38. Sun, D.-Z., Zhang, T., Sun, Y. & Y. Yu, Y. Rectification of El Niño–Southern Oscillation into climate anomalies of decadal and longer time-scales: Results from forced ocean GCM experiments. J. Clim. 27, 2545–2561 (2014).

    Article  Google Scholar 

  39. Liu, Z., Vavrus, S., He, F., Wen, N. & Zhong, Y. Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Clim. 18, 4684–4700 (2005).

    Article  Google Scholar 

  40. Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).

    Article  CAS  Google Scholar 

  41. Xie, S.-P. et al. Global warming pattern formation: Sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).

    Article  Google Scholar 

  42. An, S.-I., Kug, J.-S., Ham, Y.-G. & Kang, I.-S. Successive modulation of ENSO to the future greenhouse warming. J. Clim. 21, 3–21 (2008).

    Article  Google Scholar 

  43. Watanabe, M. et al. Uncertainty in the ENSO amplitude change from the past to the future. Geophys. Res. Lett. 39, L20703 (2012).

    Google Scholar 

  44. Tokinaga, H., Xie, S.-P., Deser, C., Kosaka, Y. & Okumura, Y. M. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 491, 439–443 (2012).

    Article  CAS  Google Scholar 

  45. An, S.-I. et al. Recent and future sea surface temperature trends in tropical Pacific warm pool and cold tongue regions. Clim. Dynam. 39, 1373–1383 (2012).

    Article  Google Scholar 

  46. Luo, J. J., Sasaki, W. & Masumoto, Y. Indian Ocean warming modulates Pacific climate change. Proc. Natl Acad. Sci. USA 109, 18701–18706 (2012).

    Article  CAS  Google Scholar 

  47. McGregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Clim. Change 4, 888–892 (2014).

    Article  Google Scholar 

  48. Solomon, A. & Newman, M. Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nature Clim. Change 2, 691–699 (2012).

    Article  Google Scholar 

  49. Dong, B. W. & Lu, R. Y. Interdecadal enhancement of the Walker circulation over the Tropical Pacific in the late 1990s. Adv. Atmos. Sci. 30, 247–262 (2013).

    Article  Google Scholar 

  50. England, M. H. et al. Recently intensified Pacific Ocean wind-driven circulation and the ongoing warming hiatus. Nature Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  51. L'Heureux, M., Lee, S. & Lyon, B. Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nature Clim. Change 3, 571–576 (2013).

    Article  Google Scholar 

  52. Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    Article  CAS  Google Scholar 

  53. Timmermann, A., McGregor, S. & Jin, F.-F. Wind effects on past and future regional sea level trends in the Southern Indo-Pacific. J. Clim. 23, 4429–4437 (2010).

    Article  Google Scholar 

  54. McPhaden, M. J., Lee, T. & McClurg, D. El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett. 38, L15709 (2011).

    Article  Google Scholar 

  55. Wittenberg, A. T., Rosati, A., Delworth, T. L., Vecchi, G. A. & Zeng, F. ENSO modulation: Is it decadally predictable? J. Clim. 27, 2667–2681 (2014).

    Article  Google Scholar 

  56. Xiang, B., Wang, B. & Li, T. A new paradigm for the predominance of standing Central Pacific warming after the late 1990s. Clim. Dynam. 41, 327–340 (2013).

    Article  Google Scholar 

  57. An, S.-I. & Wang, B. Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Clim. 13, 2044–2055 (2000).

    Article  Google Scholar 

  58. Fedorov, A. & Philander, S. G. Is El Niño changing? Science 288, 1997–2002 (2000).

    Article  CAS  Google Scholar 

  59. Zhang, T. & Sun, D.-Z. ENSO Asymmetry in CMIP5 models. J. Clim. 27, 4070–4093 (2014). Shows that most models underestimate ENSO asymmetry, and that the underestimation primarily results from a weaker SST warm anomaly over the eastern Pacific and a westward shift of the centre of the anomaly.

    Article  Google Scholar 

  60. Ohba, M. & Ueda, H. Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J. Clim. 22, 177–192 (2009).

    Article  Google Scholar 

  61. Okumura, Y. M. & Deser, C. Asymmetry in the duration of El Niño and La Niña. J. Clim. 23, 5826–5843 (2010).

    Article  Google Scholar 

  62. Burgers, G. & Stephenson, D. B. The 'normality' of El Niño. Geophys. Res. Lett. 26, 1027–1030 (1999).

    Article  Google Scholar 

  63. Trenberth, K. E. & Stepaniak, D. P. Indices of El Niño evolution, J. Clim. 14, 1697–1701 (2001).

    Article  Google Scholar 

  64. Lengaigne, M. & Vecchi, G. A. Contrasting the termination of moderate and extreme El Niño events in Coupled General Circulation Models. Clim. Dynam. 35, 299–313 (2010). Proposes that a large rainfall anomaly in the eastern equatorial Pacific can be used to examine whether a model is able to generate an extreme El Niño.

    Article  Google Scholar 

  65. Chiodi, A. M. & Harrison, D. E. El Niño impacts on seasonal US atmospheric circulation, temperature, and precipitation anomalies: The OLR-event perspective. J. Clim. 26, 822–837 (2013). Shows that since 1979 most of the US seasonal weather impact of El Niño events has been associated with the few events identified by the behaviour of outgoing longwave radiation (OLR) over the eastern equatorial Pacific, suggesting the utility of OLR to define El Niño.

    Article  Google Scholar 

  66. Frauen, C. & Dommenget, D. El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks. Geophys. Res. Lett. 37, L18801 (2010).

    Article  Google Scholar 

  67. Gebbie, G., Eisenman, I., Wittenberg, A. & Tziperman, E. Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J. Atmos. Sci. 64, 3281–3295 (2007).

    Article  Google Scholar 

  68. Lengaigne, M. et al. The March 1997 Westerly Wind Event and the onset of the 1997/98 El Niño: Understanding the role of the atmospheric response. J. Clim. 16, 3330–3343 (2003).

    Article  Google Scholar 

  69. An, S.-I. & Jin, F.-F. Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Clim. 14, 3421–3432 (2001).

    Article  Google Scholar 

  70. Kim, W. & Cai, W. The importance of the eastward zonal current for generating extreme El Niño. Clim. Dynam. 42, 3005–3014 (2014). Finds that the eastward zonal current, seen only during extreme El Niño, plays an important role in making an El Niño event extreme.

    Article  Google Scholar 

  71. Jin, F.-F., An, S.-I., Timmermann, A. & Zhao, J. Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett. 30, 1120 (2003).

    Article  Google Scholar 

  72. Lübbecke, J. & McPhaden, M. J. Assessing the twenty-first-century shift in ENSO variability in terms of the Bjerknes stability index. J. Clim. 27, 2577–2587 (2014).

    Article  Google Scholar 

  73. Newman, M., Alexander, M. A. & Scott, J. D. An empirical model of tropical ocean dynamics. Clim. Dynam. 37, 1823–1841 (2011).

    Article  Google Scholar 

  74. Chung, C. T. Y., Power, S. B., Arblaster, J. M., Rashid, H. A. & Roff, G. L. Nonlinear precipitation response to El Niño and global warming in the Indo-Pacific. Clim. Dynam. 42, 1837–1856 (2013).

    Article  Google Scholar 

  75. Power, S. B., Delage, F., Chung, C. T. Y., Kociuba, G. & Keay, K. Robust twenty-first century projections of El Niño and related precipitation variability. Nature 502, 541–547 (2014).

    Article  CAS  Google Scholar 

  76. Johnson, N. C. & Xie, S.-P. Changes in the sea surface temperature threshold for tropical convection. Nature Geosci. 3, 842–845 (2010). Demonstrates that under global warming, surface temperature threshold for tropical atmospheric convection increases commensurately with mean temperature over the tropics.

    Article  CAS  Google Scholar 

  77. Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510, 254–258 (2014).

    Article  CAS  Google Scholar 

  78. Sen Gupta, A., Ganachaud, A., McGregor, S., Brown, J. N. & Muir, L. Drivers of the projected changes to the Pacific Ocean equatorial circulation. Geophys. Res. Lett. 39, L09605 (2012).

    Article  Google Scholar 

  79. Gill, A. E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980).

    Article  Google Scholar 

  80. Hoskins, B. J. & Karoly, D. J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179–1196 (1981).

    Article  Google Scholar 

  81. Horel, J. D. & Wallace, J. M. Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Weath. Rev. 109, 813–829 (1981).

    Article  Google Scholar 

  82. Karoly, D. J. Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Clim. 2, 1239–1252 (1989).

    Article  Google Scholar 

  83. Cai, W., van Rensch, P., Cowan, T. & Hendon, H. H. Teleconnections pathways of ENSO and IOD and the mechanisms for impacts on Australian rainfall. J. Clim. 24, 3910 (2011).

    Article  Google Scholar 

  84. Okumura, Y. M., Ohba, M., Deser, C. & Ueda, H. A proposed mechanism for the asymmetric duration of El Niño and La Niña. J. Clim. 24, 3822–3829 (2011).

    Article  Google Scholar 

  85. DiNezio, P. N. & Deser, C. Nonlinear controls on the persistence of La Niña. J. Clim. 27, 7335–7355 (2014).

    Article  Google Scholar 

  86. Zhang, W. J., Jin, F.-F., Ren, H.-L., Li, J. & Zhao, J.-X. Differences in teleconnection over the North Pacific and rainfall shift over the USA associated with two types of El Niño during boreal autumn. J. Meteorol. Soc. Jpn 90, 535–552 (2012).

    Article  Google Scholar 

  87. Kug, J.-S., An, S.-I., Ham, Y.-G. & Kang, I.-S. Changes in El Niño and La Niña teleconnections over North Pacific-America in the global warming simulations. Theor. Appl. Climatol. 100, 275–282 (2010).

    Article  Google Scholar 

  88. Meehl, G. A. & Teng, H. Multi-model changes in El Niño teleconnections over North America in a future warmer climate. Clim. Dynam. 29, 779–790, (2007).

    Google Scholar 

  89. Stevenson, S. L. Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophy. Res. Lett. 39, L17703 (2012).

    Article  Google Scholar 

  90. Zhou, Z.-Q. et al. Global warming-induced changes in El Niño teleconnections over the North Pacific and North America. J. Clim. 27, 9050–9064 (2014).

    Article  Google Scholar 

  91. Seager, R., Naik, N. & Vogel, L. Does global warming cause intensified interannual hydroclimate variability? J. Clim. 25, 3355–3372 (2012).

    Article  Google Scholar 

  92. McGregor, S., Timmermann, A., England, M. H., Elison Timm, O. & Wittenberg, A. T. Inferred changes in El Niño–Southern Oscillation variance over the past six centuries. Clim. Past 9, 2269–2284 (2013).

    Article  Google Scholar 

  93. Li, J. et al. El Niño modulations over the past seven centuries. Nature Clim. Change 3, 822–826 (2013).

    Article  Google Scholar 

  94. Cobb, K. M. et al. Highly variable El Niño–Southern Oscillation throughout the Holocene. Science 339, 67–70 (2013).

    Article  CAS  Google Scholar 

  95. Cane, M. A. et al. Twentieth century sea surface temperature trends. Science 275, 957–960 (1997).

    Article  CAS  Google Scholar 

  96. Li, G. & Xie, S.-P. Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Clim. 27, 1765–1780 (2014).

    Article  Google Scholar 

  97. Bellucci, A., Gualdi, S. & Navarra, A. The double-ITCZ syndrome in coupled general circulation models: The role of large-scale vertical circulation regimes. J. Clim. 23, 1127–1145 (2009).

    Article  Google Scholar 

  98. Bony, S. & Dufresne, J. L. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 32, L20806 (2005).

    Article  Google Scholar 

  99. Izumo, T. et al. Influence of the state of the Indian Ocean Dipole on the following year's El Niño. Nature Geosci. 3, 168–172 (2010).

    Article  CAS  Google Scholar 

  100. Ham, Y. G., Kug, J. S., Park, J. Y. & Jin, F. F. Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nature Geosci. 6, 112–116 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

W.C. and G.W. are supported by the Australian Climate Change Science Program and a CSIRO Office of Chief Executive Science Leader award. A.S. is supported by the Australian Research Council. M.C. was supported by NERC NE/I022841/1. S.W.Y. is supported by the National Research Fund of Korea grant funded by the Korean Government (MEST) (NRF-2009-C1AAA001-2009-0093042). S.I.A. was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (No. 2014R1A2A1A11049497). This is PMEL contribution number 4038.

Author information

Authors and Affiliations

Authors

Contributions

W.C., A.S., G.W. and S.W.Y wrote the initial version of the paper. G.W. performed the model output analysis and generated all figures. All authors contributed to interpreting results, discussion of the associated dynamics and improvement of this paper.

Corresponding author

Correspondence to Wenju Cai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Santoso, A., Wang, G. et al. ENSO and greenhouse warming. Nature Clim Change 5, 849–859 (2015). https://doi.org/10.1038/nclimate2743

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing