Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Trends in hourly rainfall statistics in the United States under a warming climate

Abstract

It is now widely accepted1,2,3,4,5 that the mean world climate has warmed since the beginning of climatologically significant anthropogenic emission of greenhouse gases. Warming may be accompanied6,7,8 by changes in the rate of extreme weather events such as severe storms and drought. Here we use hourly precipitation data from 13 stations in the 48 contiguous United States to determine trends in the frequency of such events, taking the normalized variance and a renormalized fourth moment of the precipitation measurements, averaged over decades, as objective measures of the frequency and severity of extreme weather. Using data mostly from the period 1940–1999 but also two longer data series, periods that include the rapid warming that seems to have begun at approximately 1970, we find a significant increase of 6.5±1.3%(1σ) per decade in the normalized variance at a site on the Olympic Peninsula at which it is low. We place statistical limits on any trend at the remaining 12 sites, where the normalized variance and its uncertainty are larger. At most sites these limits are consistent with the same rate of linear increase as at the Olympic Peninsula site, but exclude the same rate of percentage increase.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Second moments.
Figure 2: Fourth moments.

References

  1. Jones, P. D. & Moberg, A. Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J. Clim. 16, 206–223 (2003).

    Article  Google Scholar 

  2. Menne, M. J. & Williams, C. N. Detection of undocumented change points using multiple test statistics and reference series. J. Clim. 18, 4271–4286 (2005).

    Article  Google Scholar 

  3. Trenberth, K. E. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S et al.) 235–336 (Cambridge Univ. Press, 2007).

    Google Scholar 

  4. Hansen, J., Ruedy, R., Sato, S. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

    Google Scholar 

  5. Rohde, R. et al. A new estimate of the average Earth surface land temperature spanning 1753 to 2011. Geoinfor. Geostat.: An Overview 1http://dx.doi.org/10.4172/gigs.1000101 (2012).

  6. IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J., Hanson, C. E.) (Cambridge Univ. Press 2007).

  7. IPCC Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (ed Field, C. B.) (Cambridge Univ. Press, 2007).

  8. Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nature Clim. Change 2, 491–496 (2012).

    Article  Google Scholar 

  9. Groisman, P. Ya. et al. Trends in intense precipitation in the climate record. J. Clim. 18, 1326–1350 (2005).

    Article  Google Scholar 

  10. Alexander, L. V. et al. Global observed changes in daily climatic extremes of temperature and precipitation. J. Geophys. Res. 111, D05109 (2006).

    Google Scholar 

  11. Min, S. K., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011).

    Article  CAS  Google Scholar 

  12. Utsumi, N., Seto, S., Kanae, S., Maeda, E. E. & Oki, T. Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett. 38, L16708 (2011).

    Article  Google Scholar 

  13. Groisman, P. Ya., Knight, R. W. & Karl, T. R. Changes in intense precipitation over the Central US. J. Hydrometeorol. 13, 47–66 (2012).

    Article  Google Scholar 

  14. Epstein, B. Statistical aspects of fracture problems. J. Appl. Phys. 19, 140–147 (1948).

    Article  Google Scholar 

  15. Johnson, L. G. The Statistical Treatment of Fatigue Experiments (Elsevier, 1964).

    Google Scholar 

  16. Doremus, R. H. Fracture statistics: A comparison of the normal, Weibull and Type I extreme value distributions. J. Appl. Phys. 54, 193–198 (1983).

    Article  Google Scholar 

  17. Katz, J. I. Statistics and microphysics of the fracture of glass. J. Appl. Phys. 84, 1928–1931 (1998).

    Article  CAS  Google Scholar 

  18. Katz, J. I. Atomistics of tensile failure in fused silica: Weakest link models revisited. SPIE 3848, 2–10 (1999).

    CAS  Google Scholar 

  19. Lenderink, G. & van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nature Geosci. 1, 511–515 (2008).

    Article  CAS  Google Scholar 

  20. Wong, M. C., Mok, H. Y. & Lee, T. C. Observed changes in extreme weather indices in Hong Kong. Int. J. Climatol. 31, 2300–2311 (2010).

    Article  Google Scholar 

  21. Lenderink, G., Mok, H. Y., Lee, T. C. & van Oldenborgh, G. J. Scaling and trends of hourly precipitation extremes in two different climate zones—Hong Kong and the Netherlands. Hydrol. Earth Syst. Sci. 15, 3033–3041 (2011).

    Article  Google Scholar 

  22. Von Storch, H. & Zwiers, F. W. Statistical Analysis in Climate Research (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

  23. Pali, P. et al. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470, 382–385 (2011).

    Article  Google Scholar 

  24. NOAA US Hourly Precipitation Data http://ols.nndc.noaa.gov/plolstore/plsql/olstore.prodspecific?prodnum=5008 (2011).

  25. Mandelbrot, B. B. & Wallis, J. R. Some long-run properties of geophysical records. Water Resour. Res. 5, 321–340 (1969).

    Article  Google Scholar 

  26. Hasselmann, K. Stochastic climate models Part I. Theory. Tellus 28, 473–485 (1976).

    Article  Google Scholar 

  27. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997).

    Article  Google Scholar 

  28. Pelletier, J. D. The power spectral density of atmospheric temperature from time scales of 10−2 to 106 yr. Earth Planet. Sci. Lett. 158, 157–164 (1998).

    Article  CAS  Google Scholar 

  29. Manuta, N. J. & Hare, S. R. The Pacific decadal oscillation. J. Oceanogr. 58, 35–44 (2002).

    Article  Google Scholar 

  30. Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrological cycle. Nature 419, 224–232 (2002); erratum Nature 489, 590 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Canel-Katz, J. Hoffman and J. G. Miller for comments on the manuscript, P. Ya. Groisman for assistance with the NOAA precipitation databases and Novim for support.

Author information

Authors and Affiliations

Authors

Contributions

J.I.K. conceived and designed the study and wrote the paper. T.M. contributed to the study design and writing the paper, carried out the calculations, and analysed the results.

Corresponding author

Correspondence to J. I. Katz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muschinski, T., Katz, J. Trends in hourly rainfall statistics in the United States under a warming climate. Nature Clim Change 3, 577–580 (2013). https://doi.org/10.1038/nclimate1828

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1828

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing