Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A decade of weather extremes

Abstract

The ostensibly large number of recent extreme weather events has triggered intensive discussions, both in- and outside the scientific community, on whether they are related to global warming. Here, we review the evidence and argue that for some types of extreme — notably heatwaves, but also precipitation extremes — there is now strong evidence linking specific events or an increase in their numbers to the human influence on climate. For other types of extreme, such as storms, the available evidence is less conclusive, but based on observed trends and basic physical concepts it is nevertheless plausible to expect an increase.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: World map showing the record extremes listed in Table 1.
Figure 2: Century increase in the number of monthly heat records.
Figure 3: Power dissipation index for North Atlantic tropical storms linked to tropical sea surface temperature in the main development region for Atlantic hurricanes.
Figure 4: European summer temperatures for 1500–2010.

Similar content being viewed by others

References

  1. World Meteorological Organization Provisional Statement on the Status of the Global Climate (WMO, 2011); available at http://www.wmo.int/pages/mediacentre/press_releases/gcs_2011_en.html.

  2. National Oceanic and Atmospheric Administration July 2011 - Oppressive Heat Locally and Across the Nation (NOAA, 2011); available at http://www.erh.noaa.gov/iln/climo/summaries/julyheat_summary.php.

  3. National Oceanic and Atmospheric Administration Preliminary Tornado Statistics Including Records Set in 2011 (NOAA, 2011); available at http://www.noaanews.noaa.gov/2011_tornado_information.html.

  4. World Meteorological Organization Weather Extremes in a Changing Climate: Hindsight on Foresight (WMO, 2011).

  5. World Meteorological Organization Current Extreme Weather Events (WMO, 2010); available at www.wmo.int/pages/mediacentre/news/extremeweathersequence_en.html.

  6. Hong, C. et al. Roles of European blocking and tropical–extratropical interaction in the 2010 Pakistan flooding. Geophys. Res. Lett. 38, L13806 (2011).

    Google Scholar 

  7. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  8. IPCC Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 1–19 (Cambridge Univ. Press, 2012).

  9. Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. USA 108, 17905–17909 (2011).

    Article  CAS  Google Scholar 

  10. Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2010).

    Article  Google Scholar 

  11. Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 111, D05109 (2006).

    Google Scholar 

  12. Anderson, A. & Kostinski, A. Reversible record breaking and variability: Temperature distributions across the globe. J. Appl. Meteorol. Climatol. 49, 1681–1691 (2010).

    Article  Google Scholar 

  13. Benestad, R. E. Record-values, nonstationarity tests and extreme value distributions. Glob. Planet. Change 44, 11–26 (2004).

    Article  Google Scholar 

  14. Franke, J., Wergen, G. & Krug, J. Records and sequences of records from random variables with a linear trend. J. Stat. Mech. 10, P100013 (2010).

    Google Scholar 

  15. Krug, J. Records in a changing world. J. Stat. Mech. 7, P07001 (2007).

    Google Scholar 

  16. Meehl, G. A. et al. Relative increase of record high maximum temperatures compared to record low minimum temperatures in the US. Geophys. Res. Lett. 36, L23701 (2009).

    Article  Google Scholar 

  17. Lean, J. L. & Rind, D. H. How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett. 35, 1–6 (2008).

    Article  Google Scholar 

  18. Schönwiese, C. D., Walter, A. & Brinckmann, S. Statistical assessments of anthropogenic and natural global climate forcing. An update. Meteorol. Z. 19, 3–10 (2010).

    Article  Google Scholar 

  19. Foster, G. & Rahmstorf, S. Global temperature evolution 1979–2010. Environ. Res. Lett. 6, 044022 (2011).

    Article  Google Scholar 

  20. Allen, M. R. & Stott, P. A. Estimating signal amplitudes in optimal fingerprinting, part I: Theory. Clim. Dynam. 21, 477–491 (2003).

    Article  Google Scholar 

  21. Hegerl, G. C. et al. Climate change detection and attribution: Beyond mean temperature signals. J. Clim. 19, 5058–5077 (2006).

    Article  Google Scholar 

  22. Stott, D. A. & Allen, M. R. The end-to-end attribution problem: From emissions to impacts. Climatic Change 71, 303–318 (2005).

    Article  Google Scholar 

  23. Stott, P. A. et al. Detection and attribution of climate change: A regional perspective. WIREs Clim. Change 1, 192–211 (2010).

    Article  Google Scholar 

  24. Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature 432, 610–614 (2004).

    Article  CAS  Google Scholar 

  25. Otto, F. E. L. et al. Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys. Res. Lett. 39, L04702 (2012).

    Article  Google Scholar 

  26. Min, S. K. et al. Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011).

    Article  CAS  Google Scholar 

  27. Pall, P. et al. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470, 382–386 (2011).

    Article  CAS  Google Scholar 

  28. Karoly, D. J. et al. Detection of a human influence on North American climate. Science 302, 1200–1203 (2003).

    Article  CAS  Google Scholar 

  29. Kharin, V. V., Zwiers, F. W. & Zhang, X. Intercomparison of near-surface temperature and precipitation extremes in AMIP-2 simulations, reanalyses, and observations. J. Clim. 18, 5201–5223 (2005).

    Article  Google Scholar 

  30. Luterbacher, J. et al. European seasonal and annual temperature variability, trends and extremes since 1500. Science 303, 1499–1503 (2004).

    Article  CAS  Google Scholar 

  31. Robine, J. M. et al. Death toll exceeded 70,000 in Europe during the summer of 2003. C. R. Biol. 331, 171–178 (2008).

    Article  Google Scholar 

  32. Schär, C. et al. The role of increasing temperature variability in European summer heat waves. Nature 427, 332–336 (2004).

    Article  Google Scholar 

  33. Founda, D. & Giannakopoulos, C. The exceptionally hot summer of 2007 in Athens, Greece — A typical summer in the future climate? Glob. Planet. Change 67, 227–236 (2009).

    Article  Google Scholar 

  34. Karoly, D. The recent bushfires and extreme heat wave in southeast Australia. Bull. Aust. Meteorol. Oceanogr. Soc. 22, 10–13 (2009).

    Google Scholar 

  35. Trewin, B. & Vermont, H. Changes in the frequency of record temperatures in Australia, 1957–2009. Aust. Meteorol. Oceanogr. J. 60, 113–119 (2010).

    Article  Google Scholar 

  36. Wergen, G. & Krug, J. Record-breaking temperatures reveal a warming climate. EPL 92, 30008 (2010).

    Article  Google Scholar 

  37. Della-Marta, P. M. et al. Doubled length of western European summer heat waves since 1880. J. Geophys. Res. 112, D15103 (2007).

    Article  Google Scholar 

  38. Kuglitsch, F. G. et al. Heat wave changes in the eastern Mediterranean since 1960. Geophys. Res. Lett. 37, L04802 (2010).

    Article  Google Scholar 

  39. Kalkstein, L. S. & Smoyer, K. E. The impact of climate change on human health: Some international implications. Experientia 49, 969–979 (1993).

    Article  CAS  Google Scholar 

  40. Smoyer, K. E. A comparative analysis of heat waves and associated mortality in St. Louis, Missouri – 1980 and 1995. Int. J. Biometeorol. 42, 44–50 (1998).

    Article  CAS  Google Scholar 

  41. Tan, J. et al. Heat wave impacts on mortality in Shanghai, 1998 and 2003. Int. J. Biometeorol. 51, 193–200 (2006).

    Article  Google Scholar 

  42. Becker, A. & Grünewald, U. Flood risk in central Europe. Science 300, 1099 (2003).

    Article  CAS  Google Scholar 

  43. World Meteorological Organization State of the Climate in 2007 (WMO, 2009).

  44. Webster, P. J., Toma, V. E. & Kim, H. M. Were the 2010 Pakistan floods predictable? Geophys. Res. Lett. 38, L04806 (2011).

    Article  Google Scholar 

  45. Australian Bureau of Meteorology Australian Climate Variability and Change — Time Series Graphs (2011); available at http://www.bom.gov.au/cgi-bin/climate/change/timeseries.cgi.

  46. Groisman, P. Y. A. et al. Trends in intense precipitation in the climate record. J. Clim. 18, 1326–1350 (2005).

    Article  Google Scholar 

  47. Jacobeit, J. et al. Central European precipitation and temperature extremes in relation to large-scale atmospheric circulation types. Meteorol. Z. 18, 397–410 (2009).

    Article  Google Scholar 

  48. Lenderink, G. & van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nature Geosci. 1, 511–515 (2008).

    Article  CAS  Google Scholar 

  49. Lenderink, G. et al. Scaling and trends of hourly precipitation extremes in two different climate zones – Hong Kong and the Netherlands. Hydrol. Earth Syst. Sci. 15, 3033–3041 (2011).

    Article  Google Scholar 

  50. Haerter, J. O. & Berg, P. Unexpected rise in extreme precipitation caused by a shift in rain type? Nature Geosci. 2, 372–373 (2009).

    Article  CAS  Google Scholar 

  51. Pezza, A. B. & Simmonds, I. The first South Atlantic hurricane: Unprecedented blocking, low shear and climate change. Geophys. Res. Lett. 32, 1–5 (2005).

    Article  Google Scholar 

  52. Trenberth, K. E. & Shea, D. J. Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett. 33, 1–4 (2006).

    Article  Google Scholar 

  53. Fritz, H. M. et al. Cyclone Gonu storm surge in Oman. Estuar. Coast. Shelf Sci. 86, 102–106 (2010).

    Article  Google Scholar 

  54. Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005).

    Article  CAS  Google Scholar 

  55. Emanuel, K. Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908–1958. J. Adv. Model. Earth Syst. 2, 1–12 (2010).

    Article  Google Scholar 

  56. Elsner, J. B., Kossin, J. P. & Jagger, T. H. The increasing intensity of the strongest tropical cyclones. Nature 455, 92–95 (2008).

    Article  CAS  Google Scholar 

  57. Knutson, T. R. et al. Tropical cyclones and climate change. Nature Geosci. 3, 157–163 (2010).

    Article  CAS  Google Scholar 

  58. Bender, F. A-M., Ramanathan, V. & Tselioudis, G. Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Clim. Dynam. http://dx.doi.org/10.1007/s00382-011-1065-6 (2011).

  59. Archer, C. L. & Caldeira, K. Historical trends in the jet streams. Geophys. Res. Lett. 35, L08803 (2008).

    Google Scholar 

  60. Seidel, D. J. et al. Widening of the tropical belt in a changing climate. Nature Geosci. 1, 21–24 (2008).

    Article  CAS  Google Scholar 

  61. Wang, X. L., Swail, V. R. & Zwiers, F. W. Climatology and changes of extratropical cyclone activity: Comparison of ERA-40 with NCEP–NCAR reanalysis for 1958–2001. J. Clim. 19, 3145–3166 (2006).

    Article  Google Scholar 

  62. Chang, E. K. M. & Guo, Y. Is the number of North Atlantic tropical cyclones significantly underestimated prior to the availability of satellite observations? Geophys. Res. Lett. 34, L14801 (2007).

    Article  Google Scholar 

  63. Ulbrich, U., Leckebusch, G. C. & Pinto, J. G. Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Climatol. 96, 117–131 (2009).

    Article  Google Scholar 

  64. Vilibic, I. & Sepic, J. Long-term variability and trends of sea level storminess and extremes in European seas. Glob. Planet. Change 71, 1–12 (2010).

    Article  Google Scholar 

  65. Pezza, A. B. & Ambrizzi, T. Variability of Southern Hemisphere cyclone and anticyclone behavior: Further analysis. J. Clim. 16, 1075–1083 (2003).

    Article  Google Scholar 

  66. Graham, N. E. & Diaz, H. F. Evidence for intensification of North Pacific winter cyclones since 1948. Bull. Am. Meteorol. Soc. 82, 1869–1893 (2001).

    Article  Google Scholar 

  67. Gulev, S. K., Zolina, O. & Grigoriev, S. Extra-tropical cyclone variability in the Northern Hemisphere winter from NCEP/NCAR reanalysis data. Clim. Dynam. 17, 795–809 (2001).

    Article  Google Scholar 

  68. Dole, R. et al. Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett. 38, L06702 (2011).

    Article  Google Scholar 

  69. Barriopedro, D. et al. The hot summer of 2010: Redrawing the temperature record map of Europe. Science 332, 220–224 (2011).

    Article  CAS  Google Scholar 

  70. Beniston, M. The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett. 31, L02202 (2004).

    Article  Google Scholar 

  71. Kysely, J. Recent severe heat waves in central Europe: How to view them in a long-term prospect? Int. J. Climatol. 30, 89–109 (2010).

    Google Scholar 

  72. Knox, J. C. Sensitivity of modern and Holocene floods to climate change. Quat. Sci. Rev. 19, 439–457 (2000).

    Article  Google Scholar 

  73. Cassou, C., Terray, L. & Phillips, A. S. Tropical Atlantic influence on European heat waves. J. Clim. 18, 2805–2811 (2005).

    Article  Google Scholar 

  74. Schubert, S., Wang, H. & Suarez, M. Warm season subseasonal variability and climate extremes in the Northern Hemisphere: The role of stationary Rossby waves. J. Clim. 24, 4773–4792 (2011).

    Article  Google Scholar 

  75. Ogi, M., Yamazaki, K. & Tachibana, Y. The summer northern annular mode and abnormal summer weather in 2003. Geophys. Res. Lett. 32, L04706 (2005).

    Article  Google Scholar 

  76. Tachibana, Y. et al. Abrupt evolution of the summer Northern Hemisphere annular mode and its association with blocking. J. Geophys. Res. 115, D12125 (2010).

    Article  Google Scholar 

  77. Feudale, L. & Shukla, J. Influence of sea surface temperature on the European heat wave of 2003 summer. Part I: An observational study. Clim. Dynam. 36, 1691–1703 (2011).

    Article  Google Scholar 

  78. Schiermeier, Q. Extreme measures. Nature 477, 148–149 (2011).

    Article  CAS  Google Scholar 

  79. D'Andrea, F. et al. Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Clim. Dynam. 4, 385–407 (1998).

    Article  Google Scholar 

  80. Vial, J. & Osborn, T. J. Assessment of atmosphere–ocean general circulation model simulations of winter Northern Hemisphere atmospheric blocking. Clim. Dynam. http://dx.doi.org/10.1007/s00382-011-1177-z (2011).

  81. Etien, N. et al. Summer maximum temperature in northern France over the past century: Instrumental data versus multiple proxies (tree-ring isotopes, grape harvest dates and forest fires). Climatic Change 94, 429–456 (2008).

    Article  Google Scholar 

  82. Shabecoff, P. Global warming has begun, expert tells senate. New York Times (24 June 1988); available via http://go.nature.com/EJMcBa.

  83. Alexander, L. V. & Jones, P. D. Updated precipitation series for the UK and discussion of recent extremes. Atmos. Sci. Lett. 1, 1–9 (2001).

    Google Scholar 

  84. Mueller, M. Damages of the Elbe flood 2002 in Germany: A review. Geophys. Res. Abstr. 5, 992 (2003).

    Google Scholar 

  85. McTaggart-Cowan, R. et al. Analysis of Hurricane Catarina (2004). Mon. Weather Rev. 134, 3029–3053 (2006).

    Article  Google Scholar 

  86. Ven den Honert, R. C. & McAneney, J. The 2011 Brisbane floods: Causes, impacts and implications. Water 3, 1149–1173 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Benestad for providing original data from ref. 13 and K. Emanuel for providing updated data for Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Rahmstorf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coumou, D., Rahmstorf, S. A decade of weather extremes. Nature Clim Change 2, 491–496 (2012). https://doi.org/10.1038/nclimate1452

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1452

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing