Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Projections of when temperature change will exceed 2 °C above pre-industrial levels

Abstract

Climate change projections are usually presented as 'snapshots' of change at a particular time in the future. Instead, we consider the key question 'when will specific temperature thresholds be exceeded?' Framing the question as 'when might something happen (either permanently or temporarily)?' rather than 'what might happen?' demonstrates that lowering future emissions will delay the crossing of temperature thresholds and buy valuable time for planning adaptation. For example, in higher greenhouse-gas emission scenarios, a global average 2 °C warming threshold is likely to be crossed by 2060, whereas in a lower emissions scenario, the crossing of this threshold is delayed by up to several decades. On regional scales, however, the 2 °C threshold will probably be exceeded over large parts of Eurasia, North Africa and Canada by 2040 if emissions continue to increase — well within the lifetime of many people living now.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global mean surface air temperatures.
Figure 2: Proportion of GCM simulations that have a temperature above the 2 °C, 3 °C and 4 °C thresholds in each particular year.
Figure 3: Proportion of GCM simulations that have India's land-area mean surface air temperature above the 2 °C, 3 °C and 4 °C thresholds for different temperature metrics.
Figure 4: Spatial dependence of temperature increases and threshold-crossing times.
Figure 5: The likely earliest and latest times at which a 2 °C threshold is reached regionally for the IPCC SRES A1B emissions scenario.

Similar content being viewed by others

References

  1. Schneider, S. H. et al. in IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., Van der Linden, P. J. & Hanson, C. E.) 779–810 (Cambridge Univ. Press, 2007).

    Google Scholar 

  2. Easterling, W. E. et al. in IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., Van der Linden, P. J. & Hanson, C. E.) 273–313 (Cambridge Univ. Press, 2007).

    Google Scholar 

  3. Meehl, G. A. et al. The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007).

    Article  Google Scholar 

  4. Stott, P. A. & Kettleborough, J. A. Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature 416, 723–726 (2002).

    Article  CAS  Google Scholar 

  5. Stott, P. A., Kettleborough, J. A. & Allen, M. R. Uncertainty in continental-scale temperature predictions. Geophys. Res. Lett. 33, L02708 (2006).

    Article  Google Scholar 

  6. Meehl, G. A. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 748–845 (Cambridge Univ. Press, 2007).

    Google Scholar 

  7. Andronova, N. G. & Schlesinger, M. E. Objective estimation of the probability density function for climate sensitivity. J. Geophys. Res. 106, 22605–22611 (2001).

    Article  Google Scholar 

  8. Hare, B. & Meinshausen, M. How much warming are we committed to and how much can be avoided? Climatic Change 75, 111–149 (2005).

    Article  Google Scholar 

  9. Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

    Article  CAS  Google Scholar 

  10. Watterson, I. G. & Whetton, P. H. Distributions of decadal means of temperature and precipitation change under global warming. J. Geophys. Res. 116, D07101 (2011).

    Article  Google Scholar 

  11. Furrer, R., Knutti, R., Sain, S. R., Nychka, D. W. & Meehl, G. A. Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis. Geophys. Res. Lett. 34, L06711 (2007).

    Article  Google Scholar 

  12. Betts, R. A. et al. When could global warming reach 4 °C? Phil. Trans. R. Soc. A 369, 67–84 (2011).

    Article  CAS  Google Scholar 

  13. Manne, A. S. & Richels, R. G. An alternative approach to establishing trade-offs among greenhouse gases. Nature 410, 675–677 (2001).

    Article  CAS  Google Scholar 

  14. Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. & Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J. Geophys. Res. 111, D12106 (2006).

    Article  Google Scholar 

  15. Hansen, J., Ruedy, R., Glascoe, J. & Sato, M. GISS analysis of surface temperature change. J. Geophys. Res. 104, 30997–31022 (1999).

    Article  Google Scholar 

  16. Tsunyuki, M., Nakicenovic, N. & Robinson, J. Overview of mitigation scenarios for global climate stabilization based on new IPCC emission scenarios (SRES). Environ. Econ. Policy Stud. 3, 65–88 (2000).

    Article  Google Scholar 

  17. Manning, M. R. et al. Misrepresentation of the IPCC CO2 emission scenarios. Nature Geosci. 3, 376–377 (2010).

    Article  CAS  Google Scholar 

  18. Joshi, M. M., Gregory, J. M., Webb, M. J., Sexton, D. M. H. & Johns, T. C. Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim. Dynam. 30, 455–465 (2008).

    Article  Google Scholar 

  19. Peck, D. E. & Adams, R. M. The persistence of drought impacts across growing seasons: a dynamic stochastic analysis. EconPapers No 9253 (2007); available at http://econpapers.repec.org/RePEc:ags:eaa101:9253.

    Google Scholar 

  20. Lorenzoni, I., Nicholson-Cole, S. & Whitmarsh, L. Barriers perceived to engaging with climate change among the UK public and their policy implications. Glob. Environ. Change 173, 445–459 (2007).

    Article  Google Scholar 

  21. Moser, S. C. & Dilling, L. Making climate hot: communicating the urgency and challenge of global climate change. Environment 46, 32–46 (2004).

    Google Scholar 

  22. Lenton, T. 2 °C or not 2 °C? That is the climate question. Nature 473, 7 (2011).

    Article  CAS  Google Scholar 

  23. Clark, R., T., Murphy, J. M & Brown, S. J. Do global warming targets limit heatwave risk? Geophys. Res. Lett. 37, L17703 (2010).

    Article  Google Scholar 

  24. Rozenweig, C. et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353–357 (2008).

    Article  Google Scholar 

  25. Friedlingstein, P. et al. Climate–carbon Cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).

    Article  Google Scholar 

  26. Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    Article  CAS  Google Scholar 

  27. van Vuuren D. P. et al. The representative concentration pathways: an overview. Climatic Change 107, http://dx.doi.org/10.1007/s10584-011-0148-z (2011).

  28. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate projections. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009).

    Article  Google Scholar 

  29. Charlton-Perez, A. et al. The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century. Atmos. Chem. Phys. 10, 9473–9486 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.J., E.H. and R.S. are supported by the National Centre for Atmospheric Science (Climate). J.A.L. is supported by the Joint Department for Energy and Climate Change (DECC)/Defra Met Office Hadley Centre Climate Programme (GA01101) and by the DECC/Defra-funded Avoiding Dangerous Climate Change (GA0215) programme. The authors acknowledge M. Allen, A. Challinor and K. Shine for their input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Joshi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, M., Hawkins, E., Sutton, R. et al. Projections of when temperature change will exceed 2 °C above pre-industrial levels. Nature Clim Change 1, 407–412 (2011). https://doi.org/10.1038/nclimate1261

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1261

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing