Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fluoride-dependent interruption of the transport cycle of a CLC Cl/H+ antiporter

Abstract

Cl/H+ antiporters of the CLC superfamily transport anions across biological membranes in varied physiological contexts. These proteins are weakly selective among anions commonly studied, including Cl, Br, I, NO3 and SCN, but they seem to be very selective against F. The recent discovery of a new CLC clade of F/H+ antiporters, which are highly selective for F over Cl, led us to investigate the mechanism of Cl-over-F selectivity by a CLC Cl/H+ antiporter, CLC-ec1. By subjecting purified CLC-ec1 to anion transport measurements, electrophysiological recording, equilibrium ligand-binding studies and X-ray crystallography, we show that F binds in the Cl transport pathway with affinity similar to Cl but stalls the transport cycle. Examination of various mutant antiporters implies a 'lock-down' mechanism of F inhibition, in which F, by virtue of its unique hydrogen-bonding chemistry, greatly retards a proton-linked conformational change essential for the transport cycle of CLC-ec1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: F transport and binding in wild-type CLC-ec1.
Figure 2: Crystal structures of wild-type CLC-ec1 with F.
Figure 3: F handling by the ungated E148A mutant.
Figure 4: H+ transport is not involved in F inhibition.
Figure 5: Lock-down mechanism of F inhibition.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Palade, P.T. & Barchi, R.L. On the inhibition of muscle membrane chloride conductance by aromatic carboxylic acids. J. Gen. Physiol. 69, 879–896 (1977).

    Article  CAS  Google Scholar 

  2. Steinmeyer, K. et al. Inactivation of muscle chloride channel by transposon insertion in mytotonic mice. Nature 354, 304–308 (1991).

    Article  CAS  Google Scholar 

  3. Günther, W., Luchow, A., Cluzeaud, F., Vandewalle, A. & Jentsch, T.J. ClC-5, the chloride channel mutated in Dent′s disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc. Natl. Acad. Sci. USA 95, 8075–8080 (1998).

    Article  Google Scholar 

  4. Graves, A.R., Curran, P.K. & Mindell, J.A. The Cl/H+ antiporter CLC-7 is the primary chloride permeation pathway in lysozomes. Nature 453, 788–792 (2008).

    Article  CAS  Google Scholar 

  5. Steinberg, B.E. et al. A cation counterflux supports lysosomal acidification. J. Cell Biol. 189, 1171–1186 (2010).

    Article  CAS  Google Scholar 

  6. De Angeli, A. et al. AtCLCa, a proton/nitrate antiporter, mediates nitrate accumulation in plant vacuoles. Nature 442, 939–942 (2006).

    Article  CAS  Google Scholar 

  7. Iyer, R., Iverson, T.M., Accardi, A. & Miller, C. A biological role for prokaryotic ClC chloride channels. Nature 419, 715–718 (2002).

    Article  CAS  Google Scholar 

  8. Jentsch, T.J., Steinmeyer, K. & Schwarz, G. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348, 510–514 (1990).

    Article  CAS  Google Scholar 

  9. Accardi, A. & Miller, C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl channels. Nature 427, 803–807 (2004).

    Article  CAS  Google Scholar 

  10. Miller, C. ClC chloride channels viewed through a transporter lens. Nature 440, 484–489 (2006).

    Article  CAS  Google Scholar 

  11. Fahlke, C., Durr, C. & George, A.L. Mechanism of ion permeation in skeletal muscle chloride channels. J. Gen. Physiol. 110, 551–564 (1997).

    Article  CAS  Google Scholar 

  12. Rychkov, G.Y., Pusch, M., Roberts, M.L., Jentsch, T.J. & Bretag, A.H. Permeation and block of the skeletal muscle chloride channel, ClC-1, by foreign anions. J. Gen. Physiol. 111, 653–665 (1998).

    Article  CAS  Google Scholar 

  13. Maduke, M., Pheasant, D.J. & Miller, C. High-level expression, functional reconstitution, and quaternary structure of a prokaryotic ClC-type chloride channel. J. Gen. Physiol. 114, 713–722 (1999).

    Article  CAS  Google Scholar 

  14. Nguitragool, W. & Miller, C. Uncoupling of a CLC Cl/H+ exchange transporter by polyatomic anions. J. Mol. Biol. 362, 682–690 (2006).

    Article  CAS  Google Scholar 

  15. De Stefano, S., Pusch, M. & Zifarelli, G. Extracellular determinants of anion discrimination of the Cl/H+ antiporter protein CLC-5. J. Biol. Chem. 286, 44134–44144 (2011).

    Article  CAS  Google Scholar 

  16. Fahlke, C. Ion permeation and selectivity in ClC-type chloride channels. Am. J. Physiol. Renal Physiol. 280, F748–F757 (2001).

    Article  CAS  Google Scholar 

  17. Baker, J.L. et al. Widespread genetic switches and toxicity resistance proteins for fluoride. Science 335, 233–235 (2012).

    Article  CAS  Google Scholar 

  18. Stockbridge, R.B. et al. Fluoride resistance and transport by riboswitch-controlled CLC antiporters. Proc. Natl. Acad. Sci. USA 109, 15289–15294 (2012).

    Article  CAS  Google Scholar 

  19. Hille, B. Ion Channels of Excitable Membranes 3rd edn. (Sinauer Associates, 2001).

  20. Walden, M. et al. Uncoupling and turnover in a Cl/H+ exchange transporter. J. Gen. Physiol. 129, 317–329 (2007).

    Article  CAS  Google Scholar 

  21. Picollo, A., Malvezzi, M., Houtman, J.C. & Accardi, A. Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters. Nat. Struct. Mol. Biol. 16, 1294–1301 (2009).

    Article  CAS  Google Scholar 

  22. Lobet, S. & Dutzler, R. Ion binding properties of the CLC chloride selectivity filter. EMBO J. 25, 24–33 (2006).

    Article  CAS  Google Scholar 

  23. Picollo, A., Xu, Y., Johner, N., Berneche, S. & Accardi, A. Synergistic substrate binding determines the stoichiometry of transport of a prokaryotic H+:Cl exchanger. Nat. Struct. Mol. Biol. 19, 525–531 (2012).

    Article  CAS  Google Scholar 

  24. Accardi, A. et al. Separate ion pathways in a Cl/H+ exchanger. J. Gen. Physiol. 126, 563–570 (2005).

    Article  CAS  Google Scholar 

  25. Faraldo-Gómez, J.D. & Roux, B. Electrostatics of ion stabilization in a ClC chloride channel homologue from Escherichia coli. J. Mol. Biol. 339, 981–1000 (2004).

    Article  Google Scholar 

  26. Jayaram, H., Robertson, J.L., Wu, F., Williams, C. & Miller, C. Structure of a slow CLC Cl/H+ antiporter from a cyanobacterium. Biochemistry 50, 788–794 (2011).

    Article  CAS  Google Scholar 

  27. Accardi, A., Lobet, S., Williams, C., Miller, C. & Dutzler, R. Synergism between halide binding and proton transport in a CLC-type exchanger. J. Mol. Biol. 362, 691–699 (2006).

    Article  CAS  Google Scholar 

  28. Dutzler, R., Campbell, E.B. & MacKinnon, R. Gating the selectivity filter in ClC chloride channels. Science 300, 108–112 (2003).

    Article  CAS  Google Scholar 

  29. Feng, L., Campbell, E.B., Hsiung, Y. & MacKinnon, R. Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle. Science 330, 635–641 (2010).

    Article  CAS  Google Scholar 

  30. Lim, H.H. & Miller, C. Intracellular proton-transfer mutants in a CLC Cl/H+ exchanger. J. Gen. Physiol. 133, 131–138 (2009).

    Article  CAS  Google Scholar 

  31. Lim, H.H., Shane, T. & Miller, C. Intracellular proton access in a Cl/H+ antiporter. PLoS Biol. 10, e1001441 (2012).

    Article  CAS  Google Scholar 

  32. Jayaram, H., Accardi, A., Wu, F., Williams, C. & Miller, C. Ion permeation through a Cl-selective channel designed from a CLC Cl/H+ exchanger. Proc. Natl. Acad. Sci. USA 105, 11194–11199 (2008).

    Article  CAS  Google Scholar 

  33. Miller, C. & Nguitragool, W. A provisional transport mechanism for a CLC-type Cl/H+ exchanger. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 175–180 (2008).

    Article  Google Scholar 

  34. Cametti, M. & Rissanen, K. Highlights on contemporary recognition and sensing of fluoride anion in solution and in the solid state. Chem. Soc. Rev. 42, 2016–2038 (2013).

    Article  CAS  Google Scholar 

  35. Qin, J., Chai, G., Brewer, J.M., Lovelace, L.L. & Lebioda, L. Fluoride inhibition of enolase: crystal structure and thermodynamics. Biochemistry 45, 793–800 (2006).

    Article  CAS  Google Scholar 

  36. Samygina, V.R. et al. Reversible inhibition of Escherichia coli inorganic pyrophosphatase by fluoride: trapped catalytic intermediates in cryo-crystallographic studies. J. Mol. Biol. 366, 1305–1317 (2007).

    Article  CAS  Google Scholar 

  37. Ren, A., Rajashankar, K.R. & Patel, D.J. Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch. Nature 486, 85–89 (2012).

    Article  CAS  Google Scholar 

  38. Hummer, G., Pratt, L.R. & Garcia, A.E. Free energy of ionic hydration. J. Phys. Chem. 100, 1206–1215 (1996).

    Article  CAS  Google Scholar 

  39. Accardi, A., Kolmakova-Partensky, L., Williams, C. & Miller, C. Ionic currents mediated by a prokaryotic homologue of CLC Cl– channels. J. Gen. Physiol. 123, 109–119 (2004).

    Article  CAS  Google Scholar 

  40. Prilipov, A., Phale, P.S., Van Gelder, P., Rosenbusch, J.P. & Koebnik, R. Coupling site-directed mutagenesis with high-level expression: large scale production of mutant porins from E. coli. FEMS Microbiol. Lett. 163, 65–72 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to L. Tamm (University of Virginia) for providing the porin-deleted Escherichia coli strain and to the beamline scientists for their expertise and help at the Advanced Light Source, Lawrence Berkeley Labs.

Author information

Authors and Affiliations

Authors

Contributions

H.-H.L. and R.B.S. designed and executed experiments and wrote the paper, and C.M. designed experiments and wrote the paper.

Corresponding author

Correspondence to Christopher Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figure 1 and Supplementary Tables 1–4. (PDF 639 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, HH., Stockbridge, R. & Miller, C. Fluoride-dependent interruption of the transport cycle of a CLC Cl/H+ antiporter. Nat Chem Biol 9, 721–725 (2013). https://doi.org/10.1038/nchembio.1336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1336

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing