Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering synthetic recursive pathways to generate non-natural small molecules

Abstract

Recursive pathways are broadly defined as those that catalyze a series of reactions such that the key, bond-forming functional group of the substrate is always regenerated in each cycle, allowing for a new cycle of reactions to begin. Recursive carbon-chain elongation pathways in nature produce fatty acids, polyketides, isoprenoids and α-keto acids (αKAs), which all use modular or iterative approaches for chain elongation. Recently, an artificial pathway for αKA elongation has been built that uses an engineered isopropylmalate synthase to recursively condense acetyl-CoA with αKAs. This synthetic approach expands the possibilities for recursive pathways beyond the modular or iterative synthesis of natural products and serves as a case study for understanding the challenges of building recursive pathways from nonrecursive enzymes. There exists the potential to design synthetic recursive pathways far beyond what nature has evolved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The design principle of recursive chain elongation.
Figure 2: αKA family of recursively synthesized carbon-chain molecules.
Figure 3: Homology modeling of IPMS, IPMS* and MAM3 reveals evolution of iterative behavior.
Figure 4: Workflow for engineering recursive behavior into a nonrecursive enzyme as the basis for a synthetic pathway.
Figure 5: Four potential modes of intersubunit communication that can be introduced into a recursive pathway to prevent premature chain termination.

Similar content being viewed by others

References

  1. Chan, Y.A. & Thomas, M.G. Formation and characterization of acyl carrier protein-linked polyketide synthase extender units. Methods Enzymol. 459, 143–163 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Withers, S.T. & Keasling, J.D. Biosynthesis and engineering of isoprenoid small molecules. Appl. Microbiol. Biotechnol. 73, 980–990 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Felnagle, E.A. et al. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol. Pharm. 5, 191–211 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gridnev, A.A. & Ittel, S.D. Catalytic chain transfer in free-radical polymerizations. Chem. Rev. 101, 3611–3660 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Satoh, K. & Kamigaito, M. Stereospecific living radical polymerization: dual control of chain length and tacticity for precision polymer synthesis. Chem. Rev. 109, 5120–5156 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Lo, P.K. & Sleiman, H.F. Nucleobase-templated polymerization: copying the chain length and polydispersity of living polymers into conjugated polymers. J. Am. Chem. Soc. 131, 4182–4183 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Grondal, C., Jeanty, M. & Enders, D. Organocatalytic cascade reactions as a new tool in total synthesis. Nat. Chem. 2, 167–178 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Baran, P.S., Maimone, T.J. & Richter, J.M. Total synthesis of marine natural products without using protecting groups. Nature 446, 404–408 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Thelen, J.J. & Ohlrogge, J.B. Metabolic engineering of fatty acid biosynthesis in plants. Metab. Eng. 4, 12–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Napier, J.A. & Graham, I.A. Tailoring plant lipid composition: designer oilseeds come of age. Curr. Opin. Plant Biol. 13, 330–337 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Goh, E.-B., Baidoo, E.E.K., Keasling, J.D. & Beller, H.R. Engineering of bacterial methyl ketone synthesis for biofuels. Appl. Environ. Microbiol. 78, 70–80 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Steen, E.J. et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463, 559–562 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Dellomonaco, C., Clomburg, J.M., Miller, E.N. & Gonzalez, R. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 476, 355–359 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, T., Chiang, Y.-M., Somoza, A.D., Oakley, B.R. & Wang, C.C.C. Engineering of an “unnatural” natural product by swapping polyketide synthase domains in Aspergillus nidulans. J. Am. Chem. Soc. 133, 13314–13316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McDaniel, R. et al. Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel “unnatural” natural products. Proc. Natl. Acad. Sci. USA 96, 1846–1851 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reeves, C.D. et al. Alteration of the substrate specificity of a modular polyketide synthase acyltransferase domain through site-specific mutations. Biochemistry 40, 15464–15470 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Reeves, C.D. et al. Production of hybrid 16-membered macrolides by expressing combinations of polyketide synthase genes in engineered Streptomyces fradiae hosts. Chem. Biol. 11, 1465–1472 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Weissman, K.J. Mutasynthesis—uniting chemistry and genetics for drug discovery. Trends Biotechnol. 25, 139–142 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Mo, S. et al. Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues. J. Am. Chem. Soc. 133, 976–985 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Baerga-Ortiz, A. et al. Directed mutagenesis alters the stereochemistry of catalysis by isolated ketoreductase domains from the erythromycin polyketide synthase. Chem. Biol. 13, 277–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Das, A., Szu, P.H., Fitzgerald, J.T. & Khosla, C. Mechanism and engineering of polyketide chain initiation in fredericamycin biosynthesis. J. Am. Chem. Soc. 132, 8831–8833 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Werneburg, M. et al. Exploiting enzymatic promiscuity to engineer a focused library of highly selective antifungal and antiproliferative aureothin analogues. J. Am. Chem. Soc. 132, 10407–10413 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Austin, M.B., Bowman, M.E., Ferrer, J.L., Schroder, J. & Noel, J.P. An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases. Chem. Biol. 11, 1179–1194 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Crawford, J.M. & Townsend, C.A. New insights into the formation of fungal aromatic polyketides. Nat. Rev. Microbiol. 8, 879–889 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma, S.M. et al. Redirecting the cyclization steps of fungal polyketide synthase. J. Am. Chem. Soc. 130, 38–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Ro, D.-K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Ajikumar, P.K. et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330, 70–74 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou, Y.J. et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J. Am. Chem. Soc. 134, 3234–3241 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Lopez-Gallego, F., Agger, S.A., Abate-Pella, D., Distefano, M.D. & Schmidt-Dannert, C. Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: catalytic promiscuity and cyclization of farnesyl pyrophosphate geometric isomers. ChemBioChem. 11, 1093–1106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Christianson, D.W. Unearthing the roots of the terpenome. Curr. Opin. Chem. Biol. 12, 141–150 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thulasiram, H.V., Erickson, H.K. & Poulter, C.D. Chimeras of two isoprenoid synthases catalyze all four coupling reactions in isoprenoid biosynthesis. Science 316, 73–76 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Yoshikuni, Y., Martin, V.J.J., Ferrin, T.E. & Keasling, J.D. Engineering cotton (+)-[δ]-cadinene synthase to an altered function: germacrene d-4-ol synthase. Chem. Biol. 13, 91–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. O'Maille, P.E. et al. Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nat. Chem. Biol. 4, 617–623 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Greenhagen, B.T., O'Maille, P.E., Noel, J.P. & Chappell, J. Identifying and manipulating structural determinates linking catalytic specificities in terpene synthases. Proc. Natl. Acad. Sci. USA 103, 9826–9831 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, K., Sawaya, M.R., Eisenberg, D.S. & Liao, J.C. Expanding metabolism for biosynthesis of nonnatural alcohols. Proc. Natl. Acad. Sci. USA 105, 20653–20658 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Atsumi, S., Hanai, T. & Liao, J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Shen, C.R. & Liao, J.C. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab. Eng. 10, 312–320 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Marcheschi, R.J. et al. A synthetic recursive “+1” pathway for carbon chain elongation. ACS Chem. Biol. published online, doi: 10.1021/cb200313e (13 January 2012).

  39. Kroumova, A.B. & Wagner, G.J. Different elongation pathways in the biosynthesis of acyl groups of trichome exudate sugar esters from various solanaceous plants. Planta 216, 1013–1021 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Slocombe, S.P. et al. Transcriptomic and reverse genetic analyses of branched-chain fatty acid and acyl sugar production in Solanum pennellii and Nicotiana benthamiana. Plant Physiol. 148, 1830–1846 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Field, B., Furniss, C., Wilkinson, A. & Mithen, R. Expression of a Brassica isopropylmalate synthase gene in Arabidopsis perturbs both glucosinolate and amino acid metabolism. Plant Mol. Biol. 60, 717–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Textor, S. et al. Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana: recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain-elongation cycle. Planta 218, 1026–1035 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Textor, S., de Kraker, J.W., Hause, B., Gershenzon, J. & Tokuhisa, J.G. MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiol. 144, 60–71 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sønderby, I.E., Geu-Flores, F. & Halkier, B.A. Biosynthesis of glucosinolates—gene discovery and beyond. Trends Plant Sci. 15, 283–290 (2010).

    Article  PubMed  CAS  Google Scholar 

  45. Kliebenstein, D.J. et al. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 126, 811–825 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Halkier, B.A. & Gershenzon, J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57, 303–333 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. de Kraker, J.W. & Gershenzon, J. From amino acid to glucosinolate biosynthesis: protein sequence changes in the evolution of methylthioalkylmalate synthase in Arabidopsis. Plant Cell 23, 38–53 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Benderoth, M., Pfalz, M. & Kroymann, J. Methylthioalkylmalate synthases: genetics, ecology and evolution. Phytochem. Rev. 8, 255–268 (2009).

    Article  CAS  Google Scholar 

  49. Howell, D.M., Harich, K., Xu, H.M. & White, R.H. α-keto acid chain elongation reactions involved in the biosynthesis of coenzyme B (7-mercaptoheptanoyl threonine phosphate) in methanogenic archaea. Biochemistry 37, 10108–10117 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Drevland, R.M., Jia, Y.H., Palmer, D.R.J. & Graham, D.E. Methanogen homoaconitase catalyzes both hydrolyase reactions in coenzyme B biosynthesis. J. Biol. Chem. 283, 28888–28896 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Benderoth, M. et al. Positive selection driving diversification in plant secondary metabolism. Proc. Natl. Acad. Sci. USA 103, 9118–9123 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. de Kraker, J.W., Luck, K., Textor, S., Tokuhisa, J.G. & Gershenzon, J. Two Arabidopsis genes (IPMS1 and IPMS2) encode isopropylmalate synthase, the branchpoint step in the biosynthesis of leucine. Plant Physiol. 143, 970–986 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Koon, N., Squire, C.J. & Baker, E.N. Crystal structure of LeuA from Mycobacterium tuberculosis, a key enzyme in leucine biosynthesis. Proc. Natl. Acad. Sci. USA 101, 8295–8300 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pieper, U. et al. MODBASE, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 37, D347–D354 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Khosla, C. & Harbury, P.B. Modular enzymes. Nature 409, 247–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Pickens, L.B., Tang, Y. & Chooi, Y.H. Metabolic engineering for the production of natural products. Annu. Rev. Chem. Biomol. Eng. 2, 211–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rausch, C., Hoof, I., Weber, T., Wohlleben, W. & Huson, D. Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol. Biol. 7, 78 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Moss, S.J., Martin, C.J. & Wilkinson, B. Loss of co-linearity by modular polyketide synthases: a mechanism for the evolution of chemical diversity. Nat. Prod. Rep. 21, 575–593 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Singh, K. & Bhakuni, V. Cation induced differential effect on structural and functional properties of Mycobacterium tuberculosis α-isopropylmalate synthase. BMC Struct. Biol. 7, 39 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Villiers, B.R.M. & Hollfelder, F. Mapping the limits of substrate specificity of the adenylation domain of TycA. ChemBioChem. 10, 671–682 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Tracewell, C.A. & Arnold, F.H. Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr. Opin. Chem. Biol. 13, 3–9 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Austin, M.B. & Noel, J.P. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79–110 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Lu, X., Vora, H. & Khosla, C. Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab. Eng. 10, 333–339 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Zha, W., Rubin-Pitel, S.B., Shao, Z.Y. & Zhao, H.M. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab. Eng. 11, 192–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Takamura, Y. & Nomura, G. Changes in the intracellular concentration of acetyl-coa and malonyl-coa in relation to the carbon and energy-metabolism of Escherichia-Coli-K12. J. Gen. Microbiol. 134, 2249–2253 (1988).

    CAS  PubMed  Google Scholar 

  66. Santos, C.N.S., Koffas, M. & Stephanopoulos, G. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab. Eng. 13, 392–400 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Lennen, R.M., Braden, D.J., West, R.M., Dumesic, J.A. & Pfleger, B.F. A process for microbial hydrocarbon synthesis: Overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol. Bioeng. 106, 193–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Leonard, E., Lim, K.-H., Saw, P.-N. & Koffas, M.A.G. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl. Environ. Microbiol. 73, 3877–3886 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang, Y.-T., Bennett, G.N. & San, K.-Y. The effects of feed and intracellular pyruvate levels on the redistribution of metabolic fluxes in Escherichia coli. Metab. Eng. 3, 115–123 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Hahn, M. & Stachelhaus, T. Harnessing the potential of communication-mediating domains for the biocombinatorial synthesis of nonribosomal peptides. Proc. Natl. Acad. Sci. USA 103, 275–280 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hutchinson, C.R. Polyketide and non-ribosomal peptide synthases: Falling together by coming apart. Proc. Natl. Acad. Sci. USA 100, 3010–3012 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Thattai, M., Burak, Y. & Shraiman, B.I. The origins of specificity in polyketide synthase protein interactions. PLOS Comput. Biol. 3, 1827–1835 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Tran, L., Tosin, M., Spencer, J.B., Leadlay, P.F. & Weissman, K.J. Covalent linkage mediates communication between ACP and TE domains in modular polyketide synthases. ChemBioChem. 9, 905–915 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Dueber, J.E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Bobik, T.A. Polyhedral organelles compartmenting bacterial metabolic processes. Appl. Microbiol. Biotechnol. 70, 517–525 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Tanaka, S., Sawaya, M.R. & Yeates, T.O. Structure and mechanisms of a protein-based organelle in Escherichia coli. Science 327, 81–84 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Parsons, J.B. et al. Synthesis of empty bacterial microcompartments, directed organelle protein incorporation, and evidence of filament-associated organelle movement. Mol. Cell 38, 305–315 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Bonacci, W. et al. Modularity of a carbon-fixing protein organelle. Proc. Natl. Acad. Sci. USA 109, 478–483 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Fan, C. et al. Short N-terminal sequences package proteins into bacterial microcompartments. Proc. Natl. Acad. Sci. USA 107, 7509–7514 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, M., Zhou, H., Wirz, M., Tang, Y. & Boddy, C.N. A thioesterase from an iterative fungal polyketide synthase shows macrocyclization and cross coupling activity and may play a role in controlling iterative cycling through product offloading. Biochemistry 48, 6288–6290 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, K. & Ohnuma, S. Chain-length determination mechanism of isoprenyl diphosphate synthases and implications for molecular evolution. Trends Biochem. Sci. 24, 445–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Nair, N. & Zhao, H. in The Metabolic Pathway Engineering Handbook Ch. 2, 2-1–2-37 (CRC Press, 2009).

    Google Scholar 

  83. Harper, M.A. et al. Phenotype sequencing: identifying the genes that cause a phenotype directly from pooled sequencing of independent mutants. PLoS ONE 6, e16517 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Siegel, J.B. et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329, 309–313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Himo, F. C–C bond formation and cleavage in radical enzymes, a theoretical perspective. Biochim. Biophys. Acta 1707, 24–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Dechancie, J. et al. How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme-inhibitor complexes? Implications for enzyme design. Protein Sci. 16, 1851–1866 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kiss, G., Röthlisberger, D., Baker, D. & Houk, K.N. Evaluation and ranking of enzyme designs. Protein Sci. 19, 1760–1773 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhu, X. & Lai, L. A novel method for enzyme design. J. Comput. Chem. 30, 256–267 (2009).

    Article  PubMed  CAS  Google Scholar 

  89. Röthlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Jiang, L. et al. De novo computational design of retro-aldol enzymes. Science 319, 1387–1391 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Looger, L.L., Dwyer, M.A., Smith, J.J. & Hellinga, H.W. Computational design of receptor and sensor proteins with novel functions. Nature 423, 185–190 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Pauling, L. Nature of forces between large molecules of biological interest. Nature 161, 707–709 (1948).

    Article  CAS  PubMed  Google Scholar 

  94. Tantillo, D.J., Jiangang, C. & Houk, K.N. Theozymes and compuzymes: theoretical models for biological catalysis. Curr. Opin. Chem. Biol. 2, 743–750 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Acevedo, O. & Jorgensen, W.L. Advances in quantum and molecular mechanical (QM/MM) simulations for organic and enzymatic reactions. Acc. Chem. Res. 43, 142–151 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C Liao.

Ethics declarations

Competing interests

J.C.L. is a cofounder of Easel Biotechnologies, LLC, which licensed related technologies from University of California–Los Angeles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felnagle, E., Chaubey, A., Noey, E. et al. Engineering synthetic recursive pathways to generate non-natural small molecules. Nat Chem Biol 8, 518–526 (2012). https://doi.org/10.1038/nchembio.959

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.959

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing