Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia

Abstract

Translocations involving the mixed lineage leukemia (MLL) gene result in human acute leukemias with very poor prognosis. The leukemogenic activity of MLL fusion proteins is critically dependent on their direct interaction with menin, a product of the multiple endocrine neoplasia (MEN1) gene. Here we present what are to our knowledge the first small-molecule inhibitors of the menin–MLL fusion protein interaction that specifically bind menin with nanomolar affinities. These compounds effectively reverse MLL fusion protein–mediated leukemic transformation by downregulating the expression of target genes required for MLL fusion protein oncogenic activity. They also selectively block proliferation and induce both apoptosis and differentiation of leukemia cells harboring MLL translocations. Identification of these compounds provides a new tool for better understanding MLL-mediated leukemogenesis and represents a new approach for studying the role of menin as an oncogenic cofactor of MLL fusion proteins. Our findings also highlight a new therapeutic strategy for aggressive leukemias with MLL rearrangements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the menin-MLL inhibitors.
Figure 2: MI-2 induces growth arrest and inhibits transformation in MLL fusion-transformed bone marrow cells.
Figure 3: MI-2 induces hematopoietic differentiation and affects expression of MLL fusion protein target genes.
Figure 4: Effect of MI-2 and MI-3 in human MLL leukemia cells.

Similar content being viewed by others

References

  1. Pui, C.H. et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 359, 1909–1915 (2002).

    Article  Google Scholar 

  2. Liu, H., Cheng, E.H. & Hsieh, J.J. MLL fusions: pathways to leukemia. Cancer Biol. Ther. 8, 1204–1211 (2009).

    Article  CAS  Google Scholar 

  3. Sorensen, P.H. et al. Molecular rearrangements of the MLL gene are present in most cases of infant acute myeloid leukemia and are strongly correlated with monocytic or myelomonocytic phenotypes. J. Clin. Invest. 93, 429–437 (1994).

    Article  CAS  Google Scholar 

  4. Cox, M.C. et al. Chromosomal aberration of the 11q23 locus in acute leukemia and frequency of MLL gene translocation: results in 378 adult patients. Am. J. Clin. Pathol. 122, 298–306 (2004).

    Article  CAS  Google Scholar 

  5. Hess, J.L. MLL: a histone methyltransferase disrupted in leukemia. Trends Mol. Med. 10, 500–507 (2004).

    Article  CAS  Google Scholar 

  6. Popovic, R. & Zeleznik-Le, N.J. MLL: how complex does it get? J. Cell. Biochem. 95, 234–242 (2005).

    Article  CAS  Google Scholar 

  7. Krivtsov, A.V. & Armstrong, S.A. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 7, 823–833 (2007).

    Article  CAS  Google Scholar 

  8. Slany, R.K. The molecular biology of mixed lineage leukemia. Haematologica 94, 984–993 (2009).

    Article  CAS  Google Scholar 

  9. Hess, J.L., Yu, B.D., Li, B., Hanson, R. & Korsmeyer, S.J. Defects in yolk sac hematopoiesis in Mll-null embryos. Blood 90, 1799–1806 (1997).

    CAS  PubMed  Google Scholar 

  10. Lawrence, H.J. et al. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid and lymphoid hematopoiesis. Blood 89, 1922–1930 (1997).

    CAS  PubMed  Google Scholar 

  11. Rozovskaia, T. et al. Upregulation of Meis1 and HoxA9 in acute lymphocytic leukemias with the t(4: 11) abnormality. Oncogene 20, 874–878 (2001).

    Article  CAS  Google Scholar 

  12. Ayton, P.M. & Cleary, M.L. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev. 17, 2298–2307 (2003).

    Article  CAS  Google Scholar 

  13. Zeisig, B.B. et al. Hoxa9 and Meis1 are key targets for MLL-ENL–mediated cellular immortalization. Mol. Cell. Biol. 24, 617–628 (2004).

    Article  CAS  Google Scholar 

  14. Wong, P., Iwasaki, M., Somervaille, T.C., So, C.W. & Cleary, M.L. Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev. 21, 2762–2774 (2007); erratum 21, 3017 (2007).

    Article  CAS  Google Scholar 

  15. Argiropoulos, B. & Humphries, R.K. Hox genes in hematopoiesis and leukemogenesis. Oncogene 26, 6766–6776 (2007).

    Article  CAS  Google Scholar 

  16. Rice, K.L. & Licht, J.D. HOX deregulation in acute myeloid leukemia. J. Clin. Invest. 117, 865–868 (2007).

    Article  CAS  Google Scholar 

  17. Ernst, P., Wang, J. & Korsmeyer, S.J. The role of MLL in hematopoiesis and leukemia. Curr. Opin. Hematol. 9, 282–287 (2002).

    Article  Google Scholar 

  18. Slany, R.K. When epigenetics kills: MLL fusion proteins in leukemia. Hematol. Oncol. 23, 1–9 (2005).

    Article  CAS  Google Scholar 

  19. Yokoyama, A. et al. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123, 207–218 (2005).

    Article  CAS  Google Scholar 

  20. Caslini, C. et al. Interaction of MLL amino terminal sequences with menin is required for transformation. Cancer Res. 67, 7275–7283 (2007).

    Article  CAS  Google Scholar 

  21. Chen, Y.X. et al. The tumor suppressor menin regulates hematopoiesis and myeloid transformation by influencing Hox gene expression. Proc. Natl. Acad. Sci. USA 103, 1018–1023 (2006).

    Article  CAS  Google Scholar 

  22. Chandrasekharappa, S.C. et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 276, 404–407 (1997).

    Article  CAS  Google Scholar 

  23. Marx, S.J. Molecular genetics of multiple endocrine neoplasia types 1 and 2. Nat. Rev. Cancer 5, 367–375 (2005).

    Article  CAS  Google Scholar 

  24. Hughes, C.M. et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol. Cell 13, 587–597 (2004).

    Article  CAS  Google Scholar 

  25. Yokoyama, A. et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol. Cell. Biol. 24, 5639–5649 (2004).

    Article  CAS  Google Scholar 

  26. Grembecka, J., Belcher, A.M., Hartley, T. & Cierpicki, T. Molecular basis of the mixed lineage leukemia-menin interaction: implications for targeting mixed lineage leukemias. J. Biol. Chem. 285, 40690–40698 (2010).

    Article  CAS  Google Scholar 

  27. Mayer, M. & Meyer, B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc. 123, 6108–6117 (2001).

    Article  CAS  Google Scholar 

  28. Murai, M.J., Chruszcz, M., Reddy, G., Grembecka, J. & Cierpicki, T. Crystal structure of menin reveals binding site for mixed lineage leukemia (MLL) protein. J. Biol. Chem. 286, 31742–31748 (2011).

    Article  CAS  Google Scholar 

  29. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).

    Article  CAS  Google Scholar 

  30. Lavau, C., Szilvassy, S.J., Slany, R. & Cleary, M.L. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J. 16, 4226–4237 (1997).

    Article  CAS  Google Scholar 

  31. Thiel, A.T. et al. MLL-AF9–induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 17, 148–159 (2010).

    Article  CAS  Google Scholar 

  32. Drabkin, H.A. et al. Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia. Leukemia 16, 186–195 (2002).

    Article  CAS  Google Scholar 

  33. Yokoyama, A., Lin, M., Naresh, A., Kitabayashi, I. & Cleary, M.L. A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 17, 198–212 (2010).

    Article  CAS  Google Scholar 

  34. Thompson, A. et al. Global down-regulation of HOX gene expression in PML-RARα+ acute promyelocytic leukemia identified by small-array real-time PCR. Blood 101, 1558–1565 (2003).

    Article  CAS  Google Scholar 

  35. Fiskus, W. et al. Histone deacetylase inhibitors deplete enhancer of zeste 2 and associated polycomb repressive complex 2 proteins in human acute leukemia cells. Mol. Cancer Ther. 5, 3096–3104 (2006).

    Article  CAS  Google Scholar 

  36. Golub, T.R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  Google Scholar 

  37. Quentmeier, H. et al. Expression of HOX genes in acute leukemia cell lines with and without MLL translocations. Leuk. Lymphoma 45, 567–574 (2004).

    Article  CAS  Google Scholar 

  38. Thomas, M. et al. Targeting MLL-AF4 with short interfering RNAs inhibits clonogenicity and engraftment of t(4;11)-positive human leukemic cells. Blood 106, 3559–3566 (2005).

    Article  CAS  Google Scholar 

  39. Armstrong, S.A. et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30, 41–47 (2002).

    Article  CAS  Google Scholar 

  40. Milne, T.A. et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc. Natl. Acad. Sci. USA 102, 749–754 (2005).

    Article  CAS  Google Scholar 

  41. Muntean, A.G. et al. The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer Cell 17, 609–621 (2010).

    Article  CAS  Google Scholar 

  42. Milne, T.A. et al. MLL associates specifically with a subset of transcriptionally active target genes. Proc. Natl. Acad. Sci. USA 102, 14765–14770 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Leukemia and Lymphoma Society (Translational Research Program grant 6070-09 to J.G. and Leukemia and Lymphoma Society Specialized Center of Research grant to J.L.H.), US National Institutes of Health R01 (1R01 CA-160467-01 to J.G.), Cancer Center (University of Virginia to J.G. and T.C.), Children's Leukemia Research Association (to J.G.), American Cancer Society (RSG-11-082-01-DMC to T.C.) and startup funds to J.G. and T.C. provided by the Department of Pathology (University of Michigan). The authors greatly appreciate support from J. Bushweller (University of Virginia) for providing the research environment for carrying out part of these studies. We are grateful to M. Larsen from the Center for Chemical Genomics, University of Michigan, for technical expertise during HTS. We would like to thank J. Tan (University of Michigan) for discussion of experimental procedures and R. Craig from the Department of Pathology (University of Michigan) for technical support with flow cytometry experiments.

Author information

Authors and Affiliations

Authors

Contributions

J.G. and T.C. initiated the project, led the project team, designed experiments and analyzed results. S.H., T.P. and A.G.M. performed cellular assays. A.S., R.J.S. and H.D.S. synthesized compounds. M.J.M. and T.H. expressed and purified proteins and ran ITC and thermal shift assays. A.M.B. performed biochemical assays. J.L.H. designed experiments and analyzed results. J.G. and T.C. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Jolanta Grembecka or Tomasz Cierpicki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Results, Supplementary Tables 1–4 and Supplementary Figures 1–14 (PDF 2471 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grembecka, J., He, S., Shi, A. et al. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol 8, 277–284 (2012). https://doi.org/10.1038/nchembio.773

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.773

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research