Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemical inhibitors of monogalactosyldiacylglycerol synthases in Arabidopsis thaliana

Abstract

Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the main lipids in photosynthetic membranes in plant cells. They are synthesized in the envelope surrounding plastids by MGD and DGD galactosyltransferases. These galactolipids are critical for the biogenesis of photosynthetic membranes, and they act as a source of polyunsaturated fatty acids for the whole cell and as phospholipid surrogates in phosphate shortage. Based on a high-throughput chemical screen, we have characterized a new compound, galvestine-1, that inhibits MGDs in vitro by competing with diacylglycerol binding. Consistent effects of galvestine-1 on Arabidopsis thaliana include root uptake, circulation in the xylem and mesophyll, inhibition of MGDs in vivo causing a reduction of MGDG content and impairment of chloroplast development. The effects on pollen germination shed light on the contribution of galactolipids to pollen-tube elongation. The whole-genome transcriptional response of Arabidopsis points to the potential benefits of galvestine-1 as a unique tool to study lipid homeostasis in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MGDG synthesis in plant cells.
Figure 2: In vitro inhibition of MGDG synthases by galvestines.
Figure 3: Design and strategy for the development of libraries of galvestine analogs.
Figure 4: In planta inhibition of galactolipid synthesis by galvestine-1.
Figure 5: In vitro inhibition of pollen tube elongation by galvestine-1.
Figure 6: Transcriptional effects of galvestine-1 in Arabidopsis.

Similar content being viewed by others

References

  1. Gounaris, K. & Barber, J. Monogalactosyldiacylglycerol - the most abundant polar lipid in nature. Trends Biochem. Sci. 8, 378–381 (1983).

    Article  CAS  Google Scholar 

  2. Andersson, L. et al. Hydrolysis of galactolipids by human pancreatic lipolytic enzymes and duodenal contents. J. Lipid Res. 36, 1392–1400 (1995).

    CAS  PubMed  Google Scholar 

  3. Härtel, H., Dormann, P. & Benning, C. DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc. Natl. Acad. Sci. USA 97, 10649–10654 (2000).

    Article  Google Scholar 

  4. Van Mooy, B.A.S. et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458, 69–72 (2009).

    Article  CAS  Google Scholar 

  5. Tjellstrom, H., Andersson, M.X., Larsson, K.E. & Sandelius, A.S. Membrane phospholipids as a phosphate reserve: the dynamic nature of phospholipid-to-digalactosyl diacylglycerol exchange in higher plants. Plant Cell Environ. 31, 1388–1398 (2008).

    Article  Google Scholar 

  6. Andersson, M.X., Larsson, K.E., Tjellström, H., Liljenberg, C. & Sandelius, A.S. The plasma membrane and the tonoplast as major targets for phospholipid- to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J. Biol. Chem. 280, 27578–27586 (2005).

    Article  CAS  Google Scholar 

  7. Jouhet, J. et al. Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J. Cell Biol. 167, 863–874 (2004).

    Article  CAS  Google Scholar 

  8. Jouhet, J., Marechal, E. & Block, M.A. Glycerolipid transfer for the building of membranes in plant cells. Prog. Lipid Res. 46, 37–55 (2007).

    Article  CAS  Google Scholar 

  9. Benning, C. A role for lipid trafficking in chloroplast biogenesis. Prog. Lipid Res. 47, 381–389 (2008).

    Article  CAS  Google Scholar 

  10. Benning, C. Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu. Rev. Cell Dev. Biol. 25, 71–91 (2009).

    Article  CAS  Google Scholar 

  11. Stroebel, D., Choquet, Y., Popot, J.L. & Picot, D. An atypical haem in the cytochrome b(6)f complex. Nature 426, 413–418 (2003).

    Article  CAS  Google Scholar 

  12. Loll, B., Kern, J., Saenger, W., Zouni, A. & Biesiadka, J. Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438, 1040–1044 (2005).

    Article  CAS  Google Scholar 

  13. Aronsson, H. et al. Monogalactosyldiacylglycerol deficiency in Arabidopsis affects pigment composition in the prolamellar body and impairs thylakoid membrane energization and photoprotection in leaves. Plant Physiol. 148, 580–592 (2008).

    Article  CAS  Google Scholar 

  14. Schleiff, E., Soll, J., Kuchler, M., Kuhlbrandt, W. & Harrer, R. Characterization of the translocon of the outer envelope of chloroplasts. J. Cell Biol. 160, 541–551 (2003).

    Article  CAS  Google Scholar 

  15. Chen, L.J. & Li, H.M. A mutant deficient in the plastid lipid DGD is defective in protein import into chloroplasts. Plant J. 16, 33–39 (1998).

    Article  Google Scholar 

  16. Kobayashi, K., Kondo, M., Fukuda, H., Nishimura, M. & Ohta, H. Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis. Proc. Natl. Acad. Sci. USA 104, 17216–17221 (2007).

    Article  CAS  Google Scholar 

  17. Dormann, P. & Benning, C. Galactolipids rule in seed plants. Trends Plant Sci. 7, 112–118 (2002).

    Article  CAS  Google Scholar 

  18. Douce, R. Site of biosynthesis of galactolipids in spinach-chloroplasts. Science 183, 852–853 (1974).

    Article  CAS  Google Scholar 

  19. Joyard, J. et al. The biochemical machinery of plastid envelope membranes. Plant Physiol. 118, 715–723 (1998).

    Article  CAS  Google Scholar 

  20. Browse, J., Warwick, N., Somerville, C.R. & Slack, C.R. Fluxes through the Prokaryotic and Eukaryotic Pathways of Lipid-Synthesis in the 16–3 Plant Arabidopsis-Thaliana. Biochem. J. 235, 25–31 (1986).

    Article  CAS  Google Scholar 

  21. Xu, C., Yu, B., Cornish, A.J., Froehlich, J.E. & Benning, C. Phosphatidylglycerol biosynthesis in chloroplasts of Arabidopsis mutants deficient in acyl-ACP glycerol-3-phosphate acyltransferase. Plant J. 47, 296–309 (2006).

    Article  CAS  Google Scholar 

  22. Nakamura, Y., Tsuchiya, M. & Ohta, H. Plastidic phosphatidic acid phosphatases identified in a distinct subfamily of lipid phosphate phosphatases with prokaryotic origin. J. Biol. Chem. 282, 29013–29021 (2007).

    Article  CAS  Google Scholar 

  23. Xu, C., Fan, J., Froehlich, J.E., Awai, K. & Benning, C. Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in Arabidopsis. Plant Cell 17, 3094–3110 (2005).

    Article  CAS  Google Scholar 

  24. Lu, B. & Benning, C. A 25-amino acid sequence of the Arabidopsis TGD2 protein is sufficient for specific binding of phosphatidic acid. J. Biol. Chem. 284, 17420–17427 (2009).

    Article  CAS  Google Scholar 

  25. Lu, B., Xu, C.C., Awai, K., Jones, A.D. & Benning, C. A small ATPase protein of Arabidopsis, TGD3, involved in chloroplast lipid import. J. Biol. Chem. 282, 35945–35953 (2007).

    Article  CAS  Google Scholar 

  26. Nakamura, Y. et al. Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proc. Natl. Acad. Sci. USA 106, 20978–20983 (2009).

    Article  CAS  Google Scholar 

  27. Jouhet, J., Marechal, E., Bligny, R., Joyard, J. & Block, M.A. Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation. FEBS Lett. 544, 63–68 (2003).

    Article  CAS  Google Scholar 

  28. Misson, J. et al. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc. Natl. Acad. Sci. USA 102, 11934–11939 (2005).

    Article  CAS  Google Scholar 

  29. Morcuende, R. et al. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ. 30, 85–112 (2007).

    Article  CAS  Google Scholar 

  30. Li, M., Qin, C.B., Welti, R. & Wang, X.M. Double knockouts of phospholipases D zeta 1 and D zeta 2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning. Plant Physiol. 140, 761–770 (2006).

    Article  CAS  Google Scholar 

  31. Li, M., Welti, R. & Wang, X.M. Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of Phospholipases D zeta 1 and D zeta 2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol. 142, 750–761 (2006).

    Article  CAS  Google Scholar 

  32. Cruz-Ramírez, A., Oropeza-Aburto, A., Razo-Hernandez, F., Ramirez-Chavez, E. & Herrera-Estrella, L. Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc. Natl. Acad. Sci. USA 103, 6765–6770 (2006).

    Article  Google Scholar 

  33. Gaude, N., Nakamura, Y., Scheible, W.R., Ohta, H. & Dormann, P. Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J. 56, 28–39 (2008).

    Article  CAS  Google Scholar 

  34. Nakamura, Y. et al. A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J. Biol. Chem. 280, 7469–7476 (2005).

    Article  CAS  Google Scholar 

  35. Awai, K. et al. Two types of MGDG synthase genes, found widely in both 16: 3 and 18: 3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 98, 10960–10965 (2001).

    Article  CAS  Google Scholar 

  36. Heemskerk, J.W.M. et al. Localization of galactolipid:galactolipid galactosyltransferase and acyltransferase in outer envelope membrane of spinach chloroplasts. Biochim. Biophys. Acta 877, 281–289 (1986).

    Article  CAS  Google Scholar 

  37. Moellering, E.R., Muthan, B. & Benning, C. Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 330, 226–228 (2010).

    Article  CAS  Google Scholar 

  38. Padham, A.K. et al. Characterization of a plastid triacylglycerol lipase from Arabidopsis. Plant Physiol. 143, 1372–1384 (2007).

    Article  CAS  Google Scholar 

  39. Youssef, A. et al. Plant lipid-associated fibrillin proteins condition jasmonate production under photosynthetic stress. Plant J. 61, 436–445 (2010).

    Article  CAS  Google Scholar 

  40. Andreou, A., Brodhun, F. & Feussner, I. Biosynthesis of oxylipins in non-mammals. Prog. Lipid Res. 48, 148–170 (2009).

    Article  CAS  Google Scholar 

  41. Jarvis, P. et al. Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc. Natl. Acad. Sci. USA 97, 8175–8179 (2000).

    Article  CAS  Google Scholar 

  42. Benning, C. & Ohta, H. Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J. Biol. Chem. 280, 2397–2400 (2005).

    Article  CAS  Google Scholar 

  43. Kobayashi, K., Awai, K., Takamiya, K. & Ohta, H. Arabidopsis type B monogalactosyldiacylglycerol synthase genes are expressed during pollen tube growth and induced by phosphate starvation. Plant Physiol. 134, 640–648 (2004).

    Article  CAS  Google Scholar 

  44. Kobayashi, K., Nakamura, Y. & Ohta, H. Type A and type B monogalactosyldiacylglycerol synthases are spatially and functionally separated in the plastids of higher plants. Plant Physiol. Biochem. 47, 518–525 (2009).

    Article  CAS  Google Scholar 

  45. Kobayashi, K. et al. Type-B monogalactosyldiacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling, and are crucial for low-phosphate adaptation. Plant J. 57, 322–331 (2009).

    Article  CAS  Google Scholar 

  46. Nishiyama, Y. et al. Refolding from denatured inclusion bodies, purification to homogeneity and simplified assay of MGDG synthases from land plants. Protein Expr. Purif. 31, 79–87 (2003).

    Article  CAS  Google Scholar 

  47. Botté, C. et al. Molecular modeling and site-directed mutagenesis of plant chloroplast monogalactosyldiacylglycerol synthase reveal critical residues for activity. J. Biol. Chem. 280, 34691–34701 (2005).

    Article  Google Scholar 

  48. Dubots, E. et al. Activation of the chloroplast monogalactosyldiacylglycerol synthase, MGD1, by phosphatidic acid and phosphatidylglycerol. J. Biol. Chem. 285, 6003–6011 (2010).

    Article  CAS  Google Scholar 

  49. Nakamura, Y., Kobayashi, K. & Ohta, H. Activation of galactolipid biosynthesis in development of pistils and pollen tubes. Plant Physiol. Biochem. 47, 535–539 (2009).

    Article  CAS  Google Scholar 

  50. Hicks, G.R. & Raikhel, N.V. Opportunities and challenges in plant chemical biology. Nat. Chem. Biol. 5, 268–272 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Albrieux, L. Caillot, C. Cataye, G. Merer, J. Revol and A. Zoppé for technical assistance and L. Lafanechère, P. Legrain and C. Vincent for helpful discussions. This work was supported by ANR-05-EMPB-017-01, ANR-06-MDCA-014, ANR-10-BLAN-1524-01 and ANR-2010-JCJC-1606-01 grants from the Agence Nationale de la Recherche, France. C.Y.B. was supported by a Marie Curie International Outgoing Fellowship action from the European Commission.

Author information

Authors and Affiliations

Authors

Contributions

A.-L.B., A.R., C.Y.B., D.F., E.D., E.M., H.H., J.-C.C., J. Jouhet, M.A.B., M.D., N.S. and Y.Y.-B. performed experiments. B.R. and R.L. designed libraries. S.A. performed chemoinformatic analyses. K.L. and E.M. designed transcriptomic experiments. J. Joyard, M.A.B. and E.M. analyzed transcriptomic data. O.B. and L.B. performed statistical analyses. E.M. designed most experiments and wrote the manuscript with the help of all authors.

Corresponding author

Correspondence to Eric Maréchal.

Ethics declarations

Competing interests

The authors have filed a patent on the MGDG synthase inhibitors described in the paper.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 1957 kb)

Supplementary Data Set 1

Supplementary Dataset 1 (XLS 25792 kb)

Supplementary Data Set 2

Supplementary Dataset 2 (XLS 25787 kb)

Supplementary Data Set 3

Supplementary Dataset 3 (XLS 123 kb)

Supplementary Data Set 4

Supplementary Dataset 4 (XLS 27 kb)

Supplementary Data Set 5

Supplementary Dataset 5 (XLS 34 kb)

Supplementary Data Set 6

Supplementary Dataset 6 (XLS 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botté, C., Deligny, M., Roccia, A. et al. Chemical inhibitors of monogalactosyldiacylglycerol synthases in Arabidopsis thaliana. Nat Chem Biol 7, 834–842 (2011). https://doi.org/10.1038/nchembio.658

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.658

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing