Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Signaling diversity of PKA achieved via a Ca2+-cAMP-PKA oscillatory circuit

Abstract

Many protein kinases are key nodal signaling molecules that regulate a wide range of cellular functions. These functions may require complex spatiotemporal regulation of kinase activities. Here, we show that protein kinase A (PKA), Ca2+ and cyclic AMP (cAMP) oscillate in sync in insulin-secreting MIN6 beta cells, forming a highly integrated oscillatory circuit. We found that PKA activity was essential for this oscillatory circuit and was capable of not only initiating the signaling oscillations but also modulating their frequency, thereby diversifying the spatiotemporal control of downstream signaling. Our findings suggest that exquisite temporal control of kinase activity, mediated via signaling circuits resulting from cross-regulation of signaling pathways, can encode diverse inputs into temporal parameters such as oscillation frequency, which in turn contribute to proper regulation of complex cellular functions in a context-dependent manner.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oscillatory changes in PKA activity in single MIN6 beta cells.
Figure 2: Oscillatory changes in PKA activity, cAMP and Ca2+ dynamics are highly coordinated in MIN6 cells.
Figure 3: PKA activity is required for Ca2+ oscillation and tunes its frequency.
Figure 4: Direct activation of PKA triggers the oscillation of the circuit.
Figure 5: Oscillatory PKA activity confers spatial control of substrates.

References

  1. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Ubersax, J.A. & Ferrell, J.E. Jr. Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol. 8, 530–541 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Carnegie, G.K., Means, C.K. & Scott, J.D. A-kinase anchoring proteins: from protein complexes to physiology and disease. IUBMB Life 61, 394–406 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brown, M.D. & Sacks, D.B. Protein scaffolds in MAP kinase signalling. Cell. Signal. 21, 462–469 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Marshall, C.J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Taylor, S.S. et al. Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design. Biochim. Biophys. Acta 1784, 16–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Seino, S. & Shibasaki, T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol. Rev. 85, 1303–1342 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Bertram, R., Sherman, A. & Satin, L.S. Metabolic and electrical oscillations: partners in controlling pulsatile insulin secretion. Am. J. Physiol. Endocrinol. Metab. 293, E890–E900 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Gromada, J., Brock, B., Schmitz, O. & Rorsman, P. Glucagon-like peptide-1: regulation of insulin secretion and therapeutic potential. Basic Clin. Pharmacol. Toxicol. 95, 252–262 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Delmeire, D. et al. Type VIII adenylyl cyclase in rat beta cells: coincidence signal detector/generator for glucose and GLP-1. Diabetologia 46, 1383–1393 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Henquin, J.C. & Meissner, H.P. The ionic, electrical, and secretory effects of endogenous cyclic adenosine monophosphate in mouse pancreatic B cells: studies with forskolin. Endocrinology 115, 1125–1134 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Ammälä, C., Ashcroft, F.M. & Rorsman, P. Calcium-independent potentiation of insulin release by cyclic AMP in single beta-cells. Nature 363, 356–358 (1993).

    Article  PubMed  Google Scholar 

  13. Hatakeyama, H., Kishimoto, T., Nemoto, T., Kasai, H. & Takahashi, N. Rapid glucose sensing by protein kinase A for insulin exocytosis in mouse pancreatic islets. J. Physiol. (Lond.) 570, 271–282 (2006).

    Article  CAS  Google Scholar 

  14. Vaag, A., Henriksen, J.E., Madsbad, S., Holm, N. & Beck-Nielsen, H. Insulin secretion, insulin action, and hepatic glucose production in identical twins discordant for non-insulin-dependent diabetes mellitus. J. Clin. Invest. 95, 690–698 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ashcroft, F.M. & Rorsman, P. Electrophysiology of the pancreatic beta-cell. Prog. Biophys. Mol. Biol. 54, 87–143 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Landa, L.R. Jr. et al. Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 beta-cell line. J. Biol. Chem. 280, 31294–31302 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Maeda, M. et al. Periodic signaling controlled by an oscillatory circuit that includes protein kinases ERK2 and PKA. Science 304, 875–878 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Hilioti, Z. et al. Oscillatory phosphorylation of yeast Fus3 MAP kinase controls periodic gene expression and morphogenesis. Curr. Biol. 18, 1700–1706 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, J., Ma, Y., Taylor, S.S. & Tsien, R.Y. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc. Natl. Acad. Sci. USA 98, 14997–15002 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, J., Hupfeld, C.J., Taylor, S.S., Olefsky, J.M. & Tsien, R.Y. Insulin disrupts beta-adrenergic signalling to protein kinase A in adipocytes. Nature 437, 569–573 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Grynkiewicz, G., Poenie, M. & Tsien, R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

  22. Leiser, M. & Fleischer, N. cAMP-dependent phosphorylation of the cardiac-type alpha 1 subunit of the voltage-dependent Ca2+ channel in a murine pancreatic beta-cell line. Diabetes 45, 1412–1418 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Bugrim, A.E. Regulation of Ca2+ release by cAMP-dependent protein kinase. A mechanism for agonist-specific calcium signaling? Cell Calcium 25, 219–226 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Allen, M.D. & Zhang, J. Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. Biochem. Biophys. Res. Commun. 348, 716–721 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. DiPilato, L.M., Cheng, X. & Zhang, J. Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc. Natl. Acad. Sci. USA 101, 16513–16518 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Violin, J.D. et al. beta2-adrenergic receptor signaling and desensitization elucidated by quantitative modeling of real time cAMP dynamics. J. Biol. Chem. 283, 2949–2961 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Chay, T.R. & Keizer, J. Minimal model for membrane oscillations in the pancreatic beta-cell. Biophys. J. 42, 181–190 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oliveria, S.F., Dell'Acqua, M.L. & Sather, W.A. AKAP79/150 anchoring of calcineurin controls neuronal L-type Ca2+ channel activity and nuclear signaling. Neuron 55, 261–275 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bergsten, P., Grapengiesser, E., Gylfe, E., Tengholm, A. & Hellman, B. Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets. J. Biol. Chem. 269, 8749–8753 (1994).

    CAS  PubMed  Google Scholar 

  30. Dyachok, O., Isakov, Y., Sagetorp, J. & Tengholm, A. Oscillations of cyclic AMP in hormone-stimulated insulin-secreting beta-cells. Nature 439, 349–352 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Lester, L.B., Faux, M.C., Nauert, J.B. & Scott, J.D. Targeted protein kinase A and PP-2B regulate insulin secretion through reversible phosphorylation. Endocrinology 142, 1218–1227 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Neves, S.R. et al. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell 133, 666–680 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Woods, N.M., Cuthbertson, K.S.R. & Cobbold, P.H. Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature 319, 600–602 (1986).

    Article  CAS  PubMed  Google Scholar 

  34. Berridge, M.J. & Galione, A. Cytosolic calcium oscillators. FASEB J. 2, 3074–3082 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Putney, J.W. & Bird, G.S. Cytoplasmic calcium oscillations and store-operated calcium influx. J. Physiol. (Lond.) 586, 3055–3059 (2008).

    Article  CAS  Google Scholar 

  36. Li, W., Llopis, J., Whitney, M., Zlokarnik, G. & Tsien, R.Y. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392, 936–941 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Dolmetsch, R.E., Xu, K. & Lewis, R.S. Calcium oscillations increase the efficacy and specificity of calcium-dependent gene expression. Nature 392, 933–936 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Dunn, T.A. et al. Imaging of cAMP levels and protein kinase A activity reveals that retinal waves drive oscillations in second-messenger cascades. J. Neurosci. 26, 12807–12815 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Violin, J.D., Zhang, J., Tsien, R.Y. & Newton, A.C. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J. Cell Biol. 161, 899–909 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shankaran, H. et al. Rapid and sustained nuclear-cytoplasmic ERK oscillations induced by epidermal growth factor. Mol. Syst. Biol. 5, 332 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Markoulaki, S., Matson, S. & Ducibella, T. Fertilization stimulates long-lasting oscillations of CaMKII activity in mouse eggs. Dev. Biol. 272, 15–25 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Zaccolo, M. & Pozzan, T. CAMP and Ca2+ interplay: a matter of oscillation patterns. Trends Neurosci. 26, 53–55 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Borodinsky, L.N. & Spitzer, N.C. Second messenger pas de deux: the coordinated dance between calcium and cAMP. Sci. STKE 2006, pe22 (2006).

    PubMed  Google Scholar 

  44. Allen, M.D. & Zhang, J. A tunable FRET circuit for engineering fluorescent biosensors. Angew. Chem. Int. Edn Engl. 47, 500–502 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.-I. Miyazaki (Osaka University), G.G. Holz (SUNY Upstate Medical University) and G.H. Hart (Johns Hopkins University) for providing cell lines. We also thank X. Li (Johns Hopkins University) for initial technical assistance. This work was supported by US National Institutes of Health grants R01 DK073368 and DP1OD006419 (to J.Z.) and GM072024 and RR020839 (to A.L.).

Author information

Authors and Affiliations

Authors

Contributions

Q.N. and J.Z. conceived the experimental aspect of the project and did the initial experiments; A.L. designed the modeling aspect of the project. Q.N. and N.-N.A.-H. performed the majority of the experiments. A.G. constructed the mathematical model and performed the simulations. X.G. performed the western analyses. M.D.A. designed and generated one of the biosensors. J.Z., Q.N. and A.L. wrote the manuscript.

Corresponding authors

Correspondence to Andre Levchenko or Jin Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–18 (PDF 11906 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, Q., Ganesan, A., Aye-Han, NN. et al. Signaling diversity of PKA achieved via a Ca2+-cAMP-PKA oscillatory circuit. Nat Chem Biol 7, 34–40 (2011). https://doi.org/10.1038/nchembio.478

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.478

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing