Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

4-Nitrobenzoate inhibits coenzyme Q biosynthesis in mammalian cell cultures

Abstract

Coenzyme Q (Q) is an electron transporter in the respiratory chain and a lipid-soluble antioxidant that decreases in humans with age. Here we show that 4-nitrobenzoate inhibited 4-hydroxybenzoate:polyprenyl transferase (Coq2) in a competitive manner and dose-dependently decreased Q in mammalian cells without accumulation of Q intermediates. As 4-nitrobenzoate neither interfered with mitochondrial respiration nor induced oxidative stress, it should prove a valuable tool for studies on both Q deficiency and Q supplementation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of Coq2 inhibition with 4-NB.
Figure 2: 4-HB and decylubiquinone but not Q10 rescued the decreased respiration in 4-NB treated 3T3-Swiss cells.

Similar content being viewed by others

References

  1. Lenaz, G., Fato, R., Formiggini, G. & Genova, M.L. Mitochondrion 7, S8–S33 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Echtay, K.S., Winkler, E. & Klingenberg, M. Nature 408, 609–613 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Fontaine, E., Ichas, F. & Bernardi, P. J. Biol. Chem. 273, 25734–25740 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Papucci, L. et al. J. Biol. Chem. 278, 28220–28228 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Dallner, G. & Sindelar, P.J. Free Radic. Biol. Med. 29, 285–294 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Sohal, R.S. Methods Enzymol. 378, 146–151 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Sun, I.L. et al. Proc. Natl. Acad. Sci. USA 89, 11126–11130 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martín, S.F., Navarro, F., Forthoffer, N., Navas, P. & Villalba, J.M. J. Bioenerg. Biomembr. 33, 143–153 (2001).

    Article  PubMed  Google Scholar 

  9. Villalba, J.M. et al. Proc. Natl. Acad. Sci. USA 92, 4887–4891 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kalén, A., Appelkvist, E.L. & Dallner, G. Lipids 24, 579–584 (1989).

    Article  PubMed  Google Scholar 

  11. Kamzalov, S. & Sohal, R.S. Exp. Gerontol. 39, 1199–1205 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Galpern, W.R. & Cudkowicz, M.E. Mitochondrion 7, S146–S153 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Singh, U., Devaraj, S. & Jialal, I. Nutr. Rev. 65, 286–293 (2007).

    Article  PubMed  Google Scholar 

  14. Quinzii, C.M. et al. FASEB J. 22, 1874–1885 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. DiMauro, S., Quinzii, C.M. & Hirano, M. J. Clin. Invest. 117, 587–589 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rötig, A., Mollet, J., Rio, M. & Munnich, A. Mitochondrion 7, S112–S121 (2007).

    Article  PubMed  Google Scholar 

  17. Tran, U.C. & Clarke, C.F. Mitochondrion 7, S62–S71 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nambudiri, A.M.D., Brockman, D., Alam, S.S. & Rudney, H. Biochem. Biophys. Res. Commun. 76, 282–288 (1977).

    Article  CAS  Google Scholar 

  19. Alam, S.S., Nambudiri, A.M. & Rudney, H. Arch. Biochem. Biophys. 171, 183–190 (1975).

    Article  CAS  PubMed  Google Scholar 

  20. Clarke, C.F. Protoplasma 213, 134–147 (2000).

    Article  CAS  Google Scholar 

  21. Miyadera, H. et al. J. Biol. Chem. 276, 7713–7716 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Duncan, A.J. et al. Am. J. Hum. Genet. 84, 558–566 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Chojnacki (Institute of Biochemistry and Biophysics, Polish Academy of Sciences) for kindly providing the various radioactive and non-radioactive isoprenoids. We are also indebted to J.W. DePierre and B.D. Nelson (Department of Biochemistry and Biophysics, Stockholm Univ.) for valuable discussions during preparation of the manuscript. This work was supported by the Loo and Hans Osterman Foundation for Geriatric Research, the Ollie and Elof Ericsson Foundation, the O.E. and Edla Johansson Foundation, the Helge Ax:son Johnson foundation and the Carl Trygger Foundation.

Author information

Authors and Affiliations

Authors

Contributions

U.F., M.S. and M.T. performed the experiments. U.F. and P.J.S. designed the experiments, interpreted the data and wrote the manuscript. P.J.S. conceived the project.

Corresponding author

Correspondence to Pavel J Sindelar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–3 and Supplementary Methods (PDF 931 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forsman, U., Sjöberg, M., Turunen, M. et al. 4-Nitrobenzoate inhibits coenzyme Q biosynthesis in mammalian cell cultures. Nat Chem Biol 6, 515–517 (2010). https://doi.org/10.1038/nchembio.372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.372

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing