Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome

Subjects

Abstract

N1-Methyladenosine (m1A) is a prevalent post-transcriptional RNA modification, yet little is known about its abundance, topology and dynamics in mRNA. Here, we show that m1A is prevalent in Homo sapiens mRNA, which shows an m1A/A ratio of 0.02%. We develop the m1A-ID-seq technique, based on m1A immunoprecipitation and the inherent ability of m1A to stall reverse transcription, as a means for transcriptome-wide m1A profiling. m1A-ID-seq identifies 901 m1A peaks (from 600 genes) in mRNA and noncoding RNA and reveals a prominent feature, enrichment in the 5′ untranslated region of mRNA transcripts, that is distinct from the pattern for N6-methyladenosine, the most abundant internal mammalian mRNA modification. Moreover, m1A in mRNA is reversible by ALKBH3, a known DNA/RNA demethylase. Lastly, we show that m1A methylation responds dynamically to stimuli, and we identify hundreds of stress-induced m1A sites. Collectively, our approaches allow comprehensive analysis of m1A modification and provide tools for functional studies of potential epigenetic regulation via the reversible and dynamic m1A methylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: m1A-ID-seq utilizes an m1A antibody and a biochemical demethylation reaction to enrich and identify high-confidence m1A sites.
Figure 2: m1A-ID-seq reveals the topology of m1A in the human transcriptome.
Figure 3: m1A in RNA is reversible by ALKBH3.
Figure 4: m1A is dynamically regulated by different stimuli.

Similar content being viewed by others

Accession codes

Primary accessions

BioProject

References

  1. Machnicka, M.A. et al. MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res. 41, D262–D267 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Ozanick, S., Krecic, A., Andersland, J. & Anderson, J.T. The bipartite structure of the tRNA m1A58 methyltransferase from S. cerevisiae is conserved in humans. RNA 11, 1281–1290 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chujo, T. & Suzuki, T. Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA 18, 2269–2276 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schevitz, R.W. et al. Crystal structure of a eukaryotic initiator tRNA. Nature 278, 188–190 (1979).

    Article  CAS  PubMed  Google Scholar 

  5. Saikia, M., Fu, Y., Pavon-Eternod, M., He, C. & Pan, T. Genome-wide analysis of N1-methyl-adenosine modification in human tRNAs. RNA 16, 1317–1327 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Helm, M. et al. The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Nucleic Acids Res. 26, 1636–1643 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jühling, F. et al. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 37, D159–D162 (2009).

    Article  PubMed  Google Scholar 

  8. Suzuki, T., Nagao, A. & Suzuki, T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu. Rev. Genet. 45, 299–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Sharma, S., Watzinger, P., Kötter, P. & Entian, K.D. Identification of a novel methyltransferase, Bmt2, responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res. 41, 5428–5443 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Srivastava, R. & Gopinathan, K.P. Ribosomal RNA methylation in Mycobacterium smegmatis SN2. Biochem. Int. 15, 1179–1188 (1987).

    CAS  PubMed  Google Scholar 

  11. Peifer, C. et al. Yeast Rrp8p, a novel methyltransferase responsible for m1A 645 base modification of 25S rRNA. Nucleic Acids Res. 41, 1151–1163 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Chan, C.T. et al. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet. 6, e1001247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Helm, M. & Alfonzo, J.D. Posttranscriptional RNA modifications: playing metabolic games in a cell's chemical Legoland. Chem. Biol. 21, 174–185 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Ballesta, J.P. & Cundliffe, E. Site-specific methylation of 16S rRNA caused by pct, a pactamycin resistance determinant from the producing organism, Streptomyces pactum. J. Bacteriol. 173, 7213–7218 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Motorin, Y., Muller, S., Behm-Ansmant, I. & Branlant, C. Identification of modified residues in RNAs by reverse transcription-based methods. Methods Enzymol. 425, 21–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Behm-Ansmant, I., Helm, M. & Motorin, Y. Use of specific chemical reagents for detection of modified nucleotides in RNA. J. Nucleic Acids 2011, 408053 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hodgkinson, A. et al. High-resolution genomic analysis of human mitochondrial RNA sequence variation. Science 344, 413–415 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Hauenschild, R. et al. The reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependent. Nucleic Acids Res. 43, 9950–9964 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Falnes, P.O., Johansen, R.F. & Seeberg, E. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419, 178–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Trewick, S.C., Henshaw, T.F., Hausinger, R.P., Lindahl, T. & Sedgwick, B. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 419, 174–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Duncan, T. et al. Reversal of DNA alkylation damage by two human dioxygenases. Proc. Natl. Acad. Sci. USA 99, 16660–16665 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aas, P.A. et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421, 859–863 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Ougland, R. et al. AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation. Mol. Cell 16, 107–116 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Dango, S. et al. DNA unwinding by ASCC3 helicase is coupled to ALKBH3-dependent DNA alkylation repair and cancer cell proliferation. Mol. Cell 44, 373–384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, X. et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol. 11, 592–597 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Macon, J.B. & Wolfenden, R. 1-Methyladenosine. Dimroth rearrangement and reversible reduction. Biochemistry 7, 3453–3458 (1968).

    Article  CAS  PubMed  Google Scholar 

  27. Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Maden, B.E. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 39, 241–303 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Zheng, G. et al. Efficient and quantitative high-throughput tRNA sequencing. Nat. Methods 12, 835–837 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cozen, A.E. et al. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat. Methods 12, 879–884 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Meyer, K.D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ke, S. et al. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 29, 2037–2053 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Araujo, P.R. et al. Before it gets started: regulating translation at the 5′ UTR. Comp. Funct. Genomics 2012, 475731 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhou, J. et al. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526, 591–594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meyer, K.D. et al. 5′ UTR m6A promotes cap-independent translation. Cell 163, 999–1010 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dominissini, D. et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature http://dx.doi.org/10.1038/nature16998 (2016).

  40. Liu, N. et al. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roost, C. et al. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J. Am. Chem. Soc. 137, 2107–2115 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    Article  PubMed  Google Scholar 

  43. Wang, X. et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alarcón, C.R. et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell 162, 1299–1308 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu, J. et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Schwartz, S. et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Reports 8, 284–296 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Ping, X.L. et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24, 177–189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhu, C. & Yi, C. Switching demethylation activities between AlkB family RNA/DNA demethylases through exchange of active-site residues. Angew. Chem. Int. Edn Engl. 53, 3659–3662 (2014).

    Article  CAS  Google Scholar 

  49. Kim, D., Langmead, B. & Salzberg, S.L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank G. Jia and C. Zhang for assistance with recombinant ALKBH3 protein. This work was supported by the National Basic Research Foundation of China (no. 2014CB964900) and the National Natural Science Foundation of China (nos. 21472009 and 21522201).

Author information

Authors and Affiliations

Authors

Contributions

X.L., X.X. and C.Y. conceived the project, designed the experiments and wrote the manuscript. X.L. performed the experiments with the help of K.W., L.W. and X.S.; X.X. designed and performed the bioinformatics analysis; S.M. participated in discussion. All authors commented on and approved the paper.

Corresponding author

Correspondence to Chengqi Yi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–18. (PDF 2385 kb)

Supplementary Data Set 1

Contains the following four sheets: (1) m1A peaks of wild-type HEK293T cells, (2) m1A peaks of ALKBH3-KO cells, (3) H2O2-induced m1A, and (4) serum starvation-induced m1A. (XLSX 654 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xiong, X., Wang, K. et al. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat Chem Biol 12, 311–316 (2016). https://doi.org/10.1038/nchembio.2040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2040

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing