Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Opposing effects of folding and assembly chaperones on evolvability of Rubisco

Abstract

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the fixation of CO2 in photosynthesis. Despite its pivotal role, Rubisco is an inefficient enzyme and thus is a key target for directed evolution. Rubisco biogenesis depends on auxiliary factors, including the GroEL/ES-type chaperonin for folding and the chaperone RbcX for assembly. Here we performed directed evolution of cyanobacterial form I Rubisco using a Rubisco-dependent Escherichia coli strain. Overexpression of GroEL/ES enhanced Rubisco solubility and tended to expand the range of permissible mutations. In contrast, the specific assembly chaperone RbcX had a negative effect on evolvability by preventing a subset of mutants from forming holoenzyme. Mutation F140I in the large Rubisco subunit, isolated in the absence of RbcX, increased carboxylation efficiency approximately threefold without reducing CO2 specificity. The F140I mutant resulted in a 55% improved photosynthesis rate in Synechocystis PCC6803. The requirement of specific biogenesis factors downstream of chaperonin may have retarded the natural evolution of Rubisco.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chaperone effects on functional expression of Rubisco mutants.
Figure 2: Chaperone effects on mutational tolerance of Rubisco.
Figure 3: Location of mutations in the large subunit of Rubisco.
Figure 4: Rubisco mutants with increased fitness.
Figure 5: RbcL mutation F140I supports cyanobacterial growth with less Rubisco.
Figure 6: Effects of chaperones on Rubisco evolvability.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Whitney, S.M., Houtz, R.L. & Alonso, H. Advancing our understanding and capacity to engineer nature's CO2-sequestering enzyme, Rubisco. Plant Physiol. 155, 27–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Hohmann-Marriott, M.F. & Blankenship, R.E. Evolution of photosynthesis. Annu. Rev. Plant Biol. 62, 515–548 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Andersson, I. & Taylor, T.C. Structural framework for catalysis and regulation in ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch. Biochem. Biophys. 414, 130–140 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. John Andrews, T. & Whitney, S.M. Manipulating ribulose bisphosphate carboxylase/oxygenase in the chloroplasts of higher plants. Arch. Biochem. Biophys. 414, 159–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Barraclough, R. & Ellis, R.J. Protein synthesis in chloroplasts. IX. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplasts. Biochim. Biophys. Acta 608, 19–31 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. Goloubinoff, P., Christeller, J.T., Gatenby, A.A. & Lorimer, G.H. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on 2 chaperonin proteins and Mg-ATP. Nature 342, 884–889 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Goloubinoff, P., Gatenby, A.A. & Lorimer, G.H. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337, 44–47 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Brinker, A. et al. Dual function of protein confinement in chaperonin-assisted protein folding. Cell 107, 223–233 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Saschenbrecker, S. et al. Structure and function of RbcX, an assembly chaperone for hexadecameric Rubisco. Cell 129, 1189–1200 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, C. et al. Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature 463, 197–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Kerner, M.J. et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122, 209–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Tsai, Y.-C.C., Mueller-Cajar, O., Saschenbrecker, S., Hartl, F.U. & Hayer-Hartl, M. Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes. J. Biol. Chem. 287, 20471–20481 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Onizuka, T. et al. The rbcX gene product promotes the production and assembly of ribulose-1,5-bisphosphate carboxylase/oxygenase of Synechococcus sp PCC7002 in Escherichia coli. Plant Cell Physiol. 45, 1390–1395 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Emlyn-Jones, D., Woodger, F.J., Price, G.D. & Whitney, S.M. RbcX can function as a Rubisco chaperonin, but is non-essential in Synechococcus PCC7942. Plant Cell Physiol. 47, 1630–1640 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Bracher, A., Starling-Windhof, A., Hartl, F.U. & Hayer-Hartl, M. Crystal structure of a chaperone-bound assembly intermediate of form I Rubisco. Nat. Struct. Mol. Biol. 18, 875–880 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Tabita, F.R. Rubisco: the enzyme that keeps on giving. Cell 129, 1039–1040 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Feiz, L. et al. Ribulose-1,5-bis-phosphate carboxylase/oxygenase accumulation factor 1 is required for holoenzyme assembly in maize. Plant Cell 24, 3435–3446 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wheatley, N.M., Sundberg, C.D., Gidaniyan, S.D., Cascio, D. & Yeates, T.O. Structure and identification of a pterin dehydratase-like protein as a RuBisCO assembly factor in the α-carboxysome. J. Biol. Chem. 289, 7973–7981 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tcherkez, G. & Farquhar, G.D. Carbon isotope effect predictions for enzymes involved in the primary carbon metabolism of plant leaves. Funct. Plant Biol. 32, 277–291 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Parry, M.A.J. et al. Rubisco activity and regulation as targets for crop improvement. J. Exp. Bot. 64, 717–730 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Zeldovich, K.B., Chen, P.Q. & Shakhnovich, E.I. Protein stability imposes limits on organism complexity and speed of molecular evolution. Proc. Natl. Acad. Sci. USA 104, 16152–16157 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Povolotskaya, I.S. & Kondrashov, F.A. Sequence space and the ongoing expansion of the protein universe. Nature 465, 922–926 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Rutherford, S.L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. DePristo, M.A., Weinreich, D.M. & Hartl, D.L. Missense meanderings in sequence space: a biophysical view of protein evolution. Nat. Rev. Genet. 6, 678–687 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Tokuriki, N. & Tawfik, D.S. Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459, 668–673 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Bogumil, D. & Dagan, T. Chaperonin-dependent accelerated substitution rates in prokaryotes. Genome Biol. Evol. 2, 602–608 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bogumil, D., Landan, G., Ilhan, J. & Dagan, T. Chaperones divide yeast proteins into classes of expression level and evolutionary rate. Genome Biol. Evol. 4, 618–625 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bershtein, S., Mu, W., Serohijos, A.W.R., Zhou, J. & Shakhnovich, E.I. Protein quality control acts on folding intermediates to shape the effects of mutations on organismal fitness. Mol. Cell 49, 133–144 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Mueller-Cajar, O. & Whitney, S.M. Evolving improved Synechococcus Rubisco functional expression in Escherichia coli. Biochem. J. 414, 205–214 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Cai, Z., Liu, G., Zhang, J. & Li, Y. Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco. Protein Cell 5, 552–562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Parikh, M.R., Greene, D.N., Woods, K.K. & Matsumura, I. Directed evolution of Rubisco hypermorphs through genetic selection in engineered E. coli. Protein Eng. Des. Sel. 19, 113–119 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Mueller-Cajar, O., Morell, M. & Whitney, S.M. Directed evolution of Rubisco in Escherichia coli reveals a specificity-determining hydrogen bond in the form II enzyme. Biochemistry 46, 14067–14074 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Hudson, G.S., Morell, M.K., Arvidsson, Y.B.C. & Andrews, T.J. Synthesis of spinach phosphoribulokinase and ribulose 1,5-bisphosphate in Escherichia coli. Aust. J. Plant Physiol. 19, 213–221 (1992).

    CAS  Google Scholar 

  34. Newman, J., Branden, C.I. & Jones, T.A. Structure determination and refinement of ribulose 1,5-bisphosphate carboxylase/oxygenase from Synechococcus PCC6301. Acta Crystallogr. D Biol. Crystallogr. 49, 548–560 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, Z., Hong, S. & Spreitzer, R.J. Thermal-instability of ribulose-1,5-bisphosphate carboxylase oxygenase from a temperature-conditional chloroplast mutant of Chlamydomonas reinhardtii. Plant Physiol. 101, 1189–1194 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smith, S.A. & Tabita, F.R. Positive and negative selection of mutant forms of prokaryotic (cyanobacterial) ribulose-1,5-bisphosphate carboxylase/oxygenase. J. Mol. Biol. 331, 557–569 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Yeates, T.O., Kerfeld, C.A., Heinhorst, S., Cannon, G.C. & Shively, J.M. Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nat. Rev. Microbiol. 6, 681–691 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Yeates, T.O., Thompson, M.C. & Bobik, T.A. The protein shells of bacterial microcompartment organelles. Curr. Opin. Struct. Biol. 21, 223–231 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Espie, G.S. & Kimber, M.S. Carboxysomes: cyanobacterial Rubisco comes in small packages. Photosynth. Res. 109, 7–20 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Amichay, D., Levitz, R. & Gurevitz, M. Construction of a Synechocystis PCC6803 mutant suitable for the study of variant hexadecameric ribulose-bisphosphate carboxylase oxygenase enzymes. Plant Mol. Biol. 23, 465–476 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Marcus, Y., Altman-Gueta, H., Finkler, A. & Gurevitz, M. Mutagenesis at two distinct phosphate-binding sites unravels their differential roles in regulation of Rubisco activation and catalysis. J. Bacteriol. 187, 4222–4228 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tokuriki, N. & Tawfik, D.S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19, 596–604 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Tang, Y.C. et al. Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125, 903–914 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Wyganowski, K.T., Kaltenbach, M. & Tokuriki, N. GroEL/ES buffering and compensatory mutations promote protein evolution by stabilizing folding intermediates. J. Mol. Biol. 425, 3403–3414 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Chakraborty, K. et al. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell 142, 112–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Georgescauld, F. et al. GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding. Cell 157, 922–934 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tóth-Petróczy, A. & Tawfik, D.S. Slow protein evolutionary rates are dictated by surface-core association. Proc. Natl. Acad. Sci. USA 108, 11151–11156 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Machado, I.M. & Atsumi, S. Cyanobacterial biofuel production. J. Biotechnol. 162, 50–56 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Cadwell, R.C. & Joyce, G.F. Mutagenic PCR. PCR Methods Appl. 3, S136–S140 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Kane, H.J. et al. An improved method for measuring the CO2/O2 specificity of ribulosebisphosphate carboxylase-oxygenase. Aust. J. Plant Physiol. 21, 449–461 (1994).

    CAS  Google Scholar 

  51. Whitney, S.M. & Andrews, T.J. Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) supports photosynthesis and growth in tobacco. Proc. Natl. Acad. Sci. USA 98, 14738–14743 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Spreitzer, R.J. Genetic dissection of Rubisco structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 411–434 (1993).

    Article  CAS  Google Scholar 

  53. Daniel, W.W. Biostatistics: a Foundation for Analysis in the Health Sciences. 7th ed., John Wiley & Sons (1999).

  54. Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. & Stanier, R.Y. Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. J. Gen. Microbiol. 111, 1–61 (1979).

    Google Scholar 

  55. Delieu, T.J. & Walker, D.A. Simultaneous measurement of oxygen evolution and chlorophyll fluorescence from leaf pieces. Plant Physiol. 73, 534–541 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Whitney (Australian National University, Canberra) for the MM1 strain and plasmids pACBADPRK and pTRCSynLS and M. Gurevitz (Hebrew University of Jerusalem, Israel) for providing the Synechocystis sp. Syn6803Δrbc strain. Expert technical assistance by M. Braun with TEM pictures is acknowledged. We thank A. Bracher for help with structure display items and F.O. Durão, A. Meiler and B. Harbermann for support with the statistical analysis.

Author information

Authors and Affiliations

Authors

Contributions

P.D. and O.M.-C. designed the mutational screen and P.D., H.A. and P.N. performed the experiments. P.D., F.U.H. and M.H.-H. analyzed the data and F.U.H. and M.H.-H. wrote the paper on the basis of an initial draft by P.D.

Corresponding author

Correspondence to Manajit Hayer-Hartl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–4 and Supplementary Figures 1–6. (PDF 1691 kb)

Supplementary Data Set 1

Properties of Rubisco mutants from LibWT (XLSX 20 kb)

Supplementary Data Set 2

Properties of Rubisco mutants from LibF345I (XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durão, P., Aigner, H., Nagy, P. et al. Opposing effects of folding and assembly chaperones on evolvability of Rubisco. Nat Chem Biol 11, 148–155 (2015). https://doi.org/10.1038/nchembio.1715

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1715

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing