Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crystal structure of the Varkud satellite ribozyme

Abstract

The Varkud satellite (VS) ribozyme mediates rolling-circle replication of a plasmid found in the Neurospora mitochondrion. We report crystal structures of this ribozyme from Neurospora intermedia at 3.1 Å resolution, which revealed an intertwined dimer formed by an exchange of substrate helices. In each protomer, an arrangement of three-way helical junctions organizes seven helices into a global fold that creates a docking site for the substrate helix of the other protomer, resulting in the formation of two active sites in trans. This mode of RNA−RNA association resembles the process of domain swapping in proteins and has implications for RNA regulation and evolution. Within each active site, adenine and guanine nucleobases abut the scissile phosphate, poised to serve direct roles in catalysis. Similarities to the active sites of the hairpin and hammerhead ribozymes highlight the functional importance of active-site features, underscore the ability of RNA to access functional architectures from distant regions of sequence space, and suggest convergent evolution.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global architecture of the crystallized dimeric VS ribozyme.
Figure 2: Trans form of the VS ribozyme including docked substrate.
Figure 3: Three-way junctions in the VS ribozyme monomer.
Figure 4: Local environment of the VS ribozyme active site.
Figure 5: Active site similarities in the VS, hairpin and hammerhead ribozymes.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Lilley, D.M.J. & Eckstein, F. Ribozymes and RNA Catalysis (eds. Lilley, D.M.J. & Eckstein, F.) 1–7 (RSC Publishing, Cambridge, 2008).

  2. Thompson, J.E. & Raines, R.T. Value of general acid-base catalysis to ribonuclease A. J. Am. Chem. Soc. 116, 5467–5468 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cochrane, J.C. & Strobel, S.A. Catalytic strategies of self-cleaving ribozymes. Acc. Chem. Res. 41, 1027–1035 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Kennell, J.C. et al. The VS catalytic RNA replicates by reverse transcription as a satellite of a retroplasmid. Genes Dev. 9, 294–303 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Saville, B.J. & Collins, R.A. A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell 61, 685–696 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Beattie, T.L., Olive, J.E. & Collins, R.A. A secondary-structure model for the self-cleaving region of Neurospora VS RNA. Proc. Natl. Acad. Sci. USA 92, 4686–4690 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones, F.D., Ryder, S.P. & Strobel, S.A. An efficient ligation reaction promoted by a Varkud Satellite ribozyme with extended 5′- and 3′- termini. Nucleic Acids Res. 29, 5115–5120 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guo, H.C. & Collins, R.A. Efficient trans-cleavage of a stem-loop RNA substrate by a ribozyme derived from Neurospora VS RNA. EMBO J. 14, 368–376 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ouellet, J., Byrne, M. & Lilley, D.M. Formation of an active site in trans by interaction of two complete Varkud Satellite ribozymes. RNA 15, 1822–1826 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kath-Schorr, S. et al. General acid-base catalysis mediated by nucleobases in the hairpin ribozyme. J. Am. Chem. Soc. 134, 16717–16724 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wilson, T.J., McLeod, A.C. & Lilley, D.M. A guanine nucleobase important for catalysis by the VS ribozyme. EMBO J. 26, 2489–2500 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sood, V.D. & Collins, R.A. Identification of the catalytic subdomain of the VS ribozyme and evidence for remarkable sequence tolerance in the active site loop. J. Mol. Biol. 320, 443–454 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Lafontaine, D.A., Wilson, T.J., Zhao, Z.Y. & Lilley, D.M. Functional group requirements in the probable active site of the VS ribozyme. J. Mol. Biol. 323, 23–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Wilson, T.J. & Lilley, D.M.J. Do the hairpin and VS ribozymes share a common catalytic mechanism based on general acid-base catalysis? A critical assessment of available experimental data. RNA 17, 213–221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rupert, P.B. & Ferré-D'Amaré, A.R. Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410, 780–786 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Andersen, A.A. & Collins, R.A. Intramolecular secondary structure rearrangement by the kissing interaction of the Neurospora VS ribozyme. Proc. Natl. Acad. Sci. USA 98, 7730–7735 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andersen, A.A. & Collins, R.A. Rearrangement of a stable RNA secondary structure during VS ribozyme catalysis. Mol. Cell 5, 469–478 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Zamel, R. & Collins, R.A. Rearrangement of substrate secondary structure facilitates binding to the Neurospora VS ribozyme. J. Mol. Biol. 324, 903–915 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Koldobskaya, Y. et al. A portable RNA sequence, whose recognition by a synthetic antibody facilitates structural determination. Nat. Struct. Mol. Biol. 18, 100–106 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Rousseau, F., Schymkowitz, J. & Itzhaki, L.S. Implications of 3D domain swapping for protein folding, misfolding and function. Adv. Exp. Med. Biol. 747, 137–152 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Lafontaine, D.A., Norman, D.G. & Lilley, D.M. The global structure of the VS ribozyme. EMBO J. 21, 2461–2471 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lipfert, J., Ouellet, J., Norman, D.G., Doniach, S. & Lilley, D.M. The complete VS ribozyme in solution studied by small-angle X-ray scattering. Structure 16, 1357–1367 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rastogi, T., Beattie, T.L., Olive, J.E. & Collins, R.A. A long range pseudoknot is required for activity of the Neurospora VS ribozyme. EMBO J. 15, 2820–2825 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bouchard, P. et al. Role of SLV in SLI substrate recognition by the Neurospora VS ribozyme. RNA 14, 736–748 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bouchard, P. & Legault, P. A remarkably stable kissing-loop interaction defines substrate recognition by the Neurospora Varkud Satellite ribozyme. RNA 20, 1451–1464 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suslov, N.B. Crystal Structure of the VS Ribozyme: Implications for RNA Catalysis, Biology and Evolution. Thesis, University of Chicago (2012).

  27. Poon, A.H.L., Olive, J.E., McLaren, M. & Collins, R.A. Identification of separate structural features that affect rate and cation concentration dependence of self-cleavage by the Neurospora VS ribozyme. Biochemistry 45, 13394–13400 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Bonneau, E. & Legault, P. Nuclear magnetic resonance structure of the III–IV-V three-way junction from the Varkud Satellite ribozyme and identification of magnesium-binding sites using paramagnetic relaxation enhancement. Biochemistry 53, 6264–6275 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Lafontaine, D.A., Norman, D.G. & Lilley, D.M. Structure, folding and activity of the VS ribozyme: importance of the 2–3-6 helical junction. EMBO J. 20, 1415–1424 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hiley, S.L., Sood, V.D., Fan, J. & Collins, R.A. 4-thio-U cross-linking identifies the active site of the VS ribozyme. EMBO J. 21, 4691–4698 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, Y., Wilson, T.J., McPhee, S. & Lilley, D.M.J. Crystal structure and mechanistic investigation of the Twister ribozyme. Nat. Chem. Biol. 10, 739–744 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Eiler, D., Wang, J. & Steitz, T.A. Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proc. Natl. Acad. Sci. USA 111, 13028–13033 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ren, A. et al. In-line alignment and Mg2+ coordination at the cleavage site of the env22 twister ribozyme. Nat. Commun. 5, 5534 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Wilson, T.J. et al. Nucleobase-mediated general acid-base catalysis in the Varkud satellite ribozyme. Proc. Natl. Acad. Sci. USA 107, 11751–11756 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pinard, R. et al. Functional involvement of G8 in the hairpin ribozyme cleavage mechanism. EMBO J. 20, 6334–6442 (2001).

    Article  Google Scholar 

  36. Heldenbrand, H. et al. Evidence for the role of active site residues in the hairpin ribozyme from molecular simulations along the reaction path. J. Am. Chem. Soc. 136, 7789–7792 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rupert, P.B., Massey, A.P., Sigurdsson, S.T. & Ferré-D'Amaré, A. Transition state stabilization by a catalytic RNA. Science 298, 1421–1424 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Desjardins, G., Bonneau, E., Girard, N., Boisbouvier, J. & Legault, P. NMR structure of the A730 loop of the Neurospora VS ribozyme: insights into the formation of the active site. Nucleic Acids Res. 39, 4427–4437 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoffmann, B. et al. NMR structure of the active conformation of the Varkud satellite ribozyme cleavage site. Proc. Natl. Acad. Sci. USA 100, 7003–7008 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Flinders, J. & Dieckmann, T. A pH controlled conformational switch in the cleavage site of the VS ribozyme substrate RNA. J. Mol. Biol. 308, 665–679 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Michiels, P.J.A., Schouten, C.H.J., Hilbers, C.W. & Heus, H.A. Structure of ribozyme substrate hairpin of Neurospora VS RNA: A close look at the cleavage site. RNA 6, 1821–1832 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cai, Z. & Tinoco, I.J. Solution structure of loop A from the hairpin ribozyme from tobacco ringspot virus satellite. Biochemistry 35, 6026–6036 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Butcher, S.E., Allain, F.H. & Feigon, J. Solution structure of the loop B domain from the hairpin ribozyme. Nat. Struct. Biol. 6, 212–216 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Kraut, J. Serine proteases: structure and mechanism of catalysis. Annu. Rev. Biochem. 46, 331–358 (1977).

    Article  CAS  PubMed  Google Scholar 

  45. Bujnicki, J.M. & Rychlewski, L. Unusual evolutionary history of the tRNA splicing endonuclease EndA: relationship to the LAGLIDADG and PD-(D/E)XK deoxyribonucleases. Protein Sci. 10, 656–660 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martick, M. & Scott, W.G. Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126, 309–320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, S., Karbstein, K., Perecchi, A., Beigelman, L. & Herschlag, D. Identification of the hammerhead ribozyme metal ion binding site responsible for rescue of the deleterious effect of a cleavage site phosphorothioate. Biochemistry 38, 14363–14378 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Belousoff, M.J. et al. Ancient machinery embedded in the contemporary ribosome. Biochem. Soc. Trans. 38, 422–427 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Keel, A.Y., Rambo, R.P., Batey, R.T. & Kieft, J.S. A general strategy to solve the phase problem in RNA crystallography. Structure 15, 761–772 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    CAS  PubMed  Google Scholar 

  51. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chou, F.-C., Sripakdeevong, P. & Das, R. Correcting pervasive errors in RNA crystallography with Rosetta. Nat. Methods 10, 74–76 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Pape, T. & Schneider, T.R. HKL2MAP: a graphical user interface for phasing with SHELX programs. J. Appl. Cryst. 37, 843–844 (2004).

    Article  CAS  Google Scholar 

  55. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  56. Keating, K.S. & Pyle, A.M. Semiautomated model building for RNA crystallography using a directed rotameric approach. Proc. Natl. Acad. Sci. USA 107, 8177–8182 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wadley, L.M. & Pyle, A.M. The identification of novel RNA structural motifs using COMPADRES: an automated approach to structural discovery. Nucleic Acids Res. 32, 6650–6659 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hura, G.L. et al. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat. Methods 6, 606–612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Franke, D., Kikhney, A.G. & Svergun, D.I. Automated acquisition and analysis of small angle X-ray scattering data. Nuc. Inst. Meth. A. 689, 52–59 (2012).

    Article  CAS  Google Scholar 

  60. Schneidman-Duhovny, D., Hammel, M., Tainer, J.A. & Sali, A. Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys. J. 105, 962–974 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Kieft for the gift of iridium hexamine; X. Yang, S. Montaño, K. Perry, B. Dhakshnamoorthy and K. Dolan for advice with crystallographic data processing; R. Hulse, I. Dementieva, A. Mateja, F. Qufei, D. Urusova and G. Dobosz for recommendations on growing crystals; and J. Olvera for expression and purification of T7 RNA polymerase. We thank staff of the Advanced Photon Source at Argonne National Laboratory for providing technical advice on X-ray data collection: K. Perry, C. Ogata, N. Venugopalan, B. Nocek and S. Banerjee; and the staff of SIBYLS beam line at Lawrence Berkeley National Laboratory for SAXS data collection. We thank S. Koide, T. Sosnick and S. Crosson for their feedback and discussion on the project, A. Kossiakoff and K. Moffat for use of their data-processing stations, F.-C. Chao and R. Das for their aid with ERRASER software, S. Shelke for help with figures, Y. Shao for help with Amigos II, and N. Tuttle, Q. Dai, N.-S. Li, K. Ceslinski, S. Fica, R. Sengupta, T. Wilson, T. Cech and A. Pyle for discussion and comments on the manuscript. This work was supported by grants from the US National Institutes of Health (R01AI081987 and R01GM102489) to J.A.P. This work is based on research conducted at the Advanced Photon Source on the Northeastern Collaborative Access Team beamline which are supported by a grant from the National Institute of General Medical Sciences (P41 GM103403) from the National Institutes of Health and Advanced Light Source beamline SIBYLS, all supported by US Department of Energy (DOE). This research used resources of the Advanced Photon Source, a US DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract DE-AC02-06CH11357 and Advanced Light Source, a US DOE Office of Science User Facility operated for the DOE Office of Science by Lawrence Berkeley National Laboratory under Integrated Diffraction Analysis (IDAT) grant contract DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

N.B.S., S.D. and J.A.P. designed the study; N.B.S., S.D. and H.H. set up high-throughput crystallization experiments; N.B.S. and S.D. screened crystals and optimized crystallization conditions; N.B.S., S.D. and P.A.R. collected the data; N.B.S. and S.D. phased and solved the structures; N.B.S. collected SAXS data,, J.R.F., S.D. and J.A.P. analyzed the SAXS data. N.B.S., S.D., D.M.J.L., P.A.R. and J.A.P. analyzed the overall data and wrote the manuscript.

Corresponding author

Correspondence to Joseph A Piccirilli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–4 and Supplementary Figures 1–11. (PDF 2617 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suslov, N., DasGupta, S., Huang, H. et al. Crystal structure of the Varkud satellite ribozyme. Nat Chem Biol 11, 840–846 (2015). https://doi.org/10.1038/nchembio.1929

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1929

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing