Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity

Abstract

The Campylobacter jejuni protein glycosylation locus (pgl) encodes machinery for asparagine-linked (N-linked) glycosylation and serves as the archetype for bacterial N-linked glycosylation. This machinery has been functionally transferred into Escherichia coli, enabling convenient mechanistic dissection of the N-linked glycosylation process in this genetically tractable host. Here we sought to identify sequence determinants in the oligosaccharyltransferase PglB that restrict its specificity to only those glycan acceptor sites containing a negatively charged residue at the −2 position relative to asparagine. This involved creation of a genetic assay, glycosylation of secreted N-linked acceptor proteins (glycoSNAP), that facilitates high-throughput screening of glycophenotypes in E. coli. Using this assay, we isolated several C. jejuni PglB variants that could glycosylate an array of noncanonical acceptor sequences, including one in a eukaryotic N-glycoprotein. These results underscore the utility of glycoSNAP for shedding light on poorly understood aspects of N-linked glycosylation and for engineering designer N-linked glycosylation biocatalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specific detection of glycosylated proteins using the glycoSNAP assay.
Figure 2: Structure- and sequence-guided mutagenesis of PglB.
Figure 3: PglB mutants exhibit relaxed substrate specificity.
Figure 4: Glycosylation of a native eukaryotic protein by PglB variants.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Apweiler, R., Hermjakob, H. & Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473, 4–8 (1999).

    Article  CAS  Google Scholar 

  2. Zielinska, D.F., Gnad, F., Wisniewski, J.R. & Mann, M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141, 897–907 (2010).

    Article  CAS  Google Scholar 

  3. Helenius, A. & Aebi, M. Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001).

    Article  CAS  Google Scholar 

  4. Helenius, A. & Aebi, M. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004).

    Article  CAS  Google Scholar 

  5. Varki, A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993).

    Article  CAS  Google Scholar 

  6. Mitra, N., Sinha, S., Ramya, T.N. & Surolia, A. N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem. Sci. 31, 156–163 (2006).

    Article  CAS  Google Scholar 

  7. Aebi, M., Bernasconi, R., Clerc, S. & Molinari, M. N-glycan structures: recognition and processing in the ER. Trends Biochem. Sci. 35, 74–82 (2010).

    Article  CAS  Google Scholar 

  8. Abu-Qarn, M., Eichler, J. & Sharon, N. Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Curr. Opin. Struct. Biol. 18, 544–550 (2008).

    Article  CAS  Google Scholar 

  9. Schwarz, F. & Aebi, M. Mechanisms and principles of N-linked protein glycosylation. Curr. Opin. Struct. Biol. 21, 576–582 (2011).

    Article  CAS  Google Scholar 

  10. Szymanski, C.M. & Wren, B.W. Protein glycosylation in bacterial mucosal pathogens. Nat. Rev. Microbiol. 3, 225–237 (2005).

    Article  CAS  Google Scholar 

  11. Larkin, A., Chang, M.M., Whitworth, G.E. & Imperiali, B. Biochemical evidence for an alternate pathway in N-linked glycoprotein biosynthesis. Nat. Chem. Biol. 9, 367–373 (2013).

    Article  CAS  Google Scholar 

  12. Zufferey, R. et al. STT3, a highly conserved protein required for yeast oligosaccharyl transferase activity in vivo. EMBO J. 14, 4949–4960 (1995).

    Article  CAS  Google Scholar 

  13. Lizak, C., Gerber, S., Numao, S., Aebi, M. & Locher, K.P. X-ray structure of a bacterial oligosaccharyltransferase. Nature 474, 350–355 (2011).

    Article  CAS  Google Scholar 

  14. Matsumoto, S. et al. Crystal structures of an archaeal oligosaccharyltransferase provide insights into the catalytic cycle of N-linked protein glycosylation. Proc. Natl. Acad. Sci. USA 110, 17868–17873 (2013).

    Article  CAS  Google Scholar 

  15. Kowarik, M. et al. Definition of the bacterial N-glycosylation site consensus sequence. EMBO J. 25, 1957–1966 (2006).

    Article  CAS  Google Scholar 

  16. Pandhal, J. et al. Inverse metabolic engineering to improve Escherichia coli as an N-glycosylation host. Biotechnol. Bioeng. 110, 2482–2493 (2013).

    Article  CAS  Google Scholar 

  17. Ihssen, J. et al. Structural insights from random mutagenesis of Campylobacter jejuni oligosaccharyltransferase PglB. BMC Biotechnol. 12, 67 (2012).

    Article  CAS  Google Scholar 

  18. Çelik, E., Fisher, A.C., Guarino, C., Mansell, T.J. & DeLisa, M.P. A filamentous phage display system for N-linked glycoproteins. Protein Sci. 19, 2006–2013 (2010).

    Article  Google Scholar 

  19. Dürr, C., Nothaft, H., Lizak, C., Glockshuber, R. & Aebi, M. The Escherichia coli glycophage display system. Glycobiology 20, 1366–1372 (2010).

    Article  Google Scholar 

  20. Valderrama-Rincon, J.D. et al. An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat. Chem. Biol. 8, 434–436 (2012).

    Article  CAS  Google Scholar 

  21. Mally, M. et al. Glycoengineering of host mimicking type-2 LacNAc polymers and Lewis X antigens on bacterial cell surfaces. Mol. Microbiol. 87, 112–131 (2013).

    Article  CAS  Google Scholar 

  22. Fisher, A.C. et al. Production of secretory and extracellular N-linked glycoproteins in Escherichia coli. Appl. Environ. Microbiol. 77, 871–881 (2011).

    Article  CAS  Google Scholar 

  23. Wacker, M. et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298, 1790–1793 (2002).

    Article  CAS  Google Scholar 

  24. Zhang, G., Brokx, S. & Weiner, J.H. Extracellular accumulation of recombinant proteins fused to the carrier protein YebF in Escherichia coli. Nat. Biotechnol. 24, 100–104 (2006).

    Article  CAS  Google Scholar 

  25. Feldman, M.F. et al. Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc. Natl. Acad. Sci. USA 102, 3016–3021 (2005).

    Article  CAS  Google Scholar 

  26. Linton, D., Allan, E., Karlyshev, A.V., Cronshaw, A.D. & Wren, B.W. Identification of N-acetylgalactosamine-containing glycoproteins PEB3 and CgpA in Campylobacter jejuni. Mol. Microbiol. 43, 497–508 (2002).

    Article  CAS  Google Scholar 

  27. Kowarik, M. et al. N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science 314, 1148–1150 (2006).

    Article  CAS  Google Scholar 

  28. Gavel, Y. & von Heijne, G. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng. 3, 433–442 (1990).

    Article  CAS  Google Scholar 

  29. Schwarz, F. et al. Relaxed acceptor site specificity of bacterial oligosaccharyltransferase in vivo. Glycobiology 21, 45–54 (2011).

    Article  CAS  Google Scholar 

  30. Ielmini, M.V. & Feldman, M.F. Desulfovibrio desulfuricans PglB homolog possesses oligosaccharyltransferase activity with relaxed glycan specificity and distinct protein acceptor sequence requirements. Glycobiology 21, 734–742 (2011).

    Article  CAS  Google Scholar 

  31. Gerber, S. et al. Mechanism of bacterial oligosaccharyltransferase: in vitro quantification of sequon binding and catalysis. J. Biol. Chem. 288, 8849–8861 (2013).

    Article  CAS  Google Scholar 

  32. Haitjema, C.H. et al. Universal Genetic Assay for Engineering Extracellular Protein Expression. ACS Synth. Biol. 3, 74–82 (2013).

    Article  Google Scholar 

  33. Shanks, R.M., Caiazza, N.C., Hinsa, S.M., Toutain, C.M. & O'Toole, G.A. Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl. Environ. Microbiol. 72, 5027–5036 (2006).

    Article  CAS  Google Scholar 

  34. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1–I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).

    Article  CAS  Google Scholar 

  35. Zhang, S. et al. Comparative characterization of the glycosylation profiles of an influenza hemagglutinin produced in plant and insect hosts. Proteomics 12, 1269–1288 (2012).

    Article  CAS  Google Scholar 

  36. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006).

    Article  CAS  Google Scholar 

  37. Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Guarino (Cornell University) for plasmid pSF-ClPglB and pBS-scFv13-R4DQNAT, J. Merritt (Glycobia, Inc.) for plasmid pMW07-pglΔB, B. Clemons (California Institute of Technology) for plasmid pET33b-ClStt3, M. Aebi (ETH Zürich) for providing antiserum used in this work, and R. Sherwood for his technical assistance acquiring the LC-MS/MS raw data files. This material is based on work supported by the US National Science Foundation grant CBET 1159581 (to M.P.D.) and National Institutes of Health (NIH) grant R44 GM088905-01 (to A.C.F. and M.P.D.) and NIH Shared Instrumentation Grant grant 1S10RR025449-01 (to S.Z.).

Author information

Authors and Affiliations

Authors

Contributions

A.A.O. designed research, performed research, analyzed data and wrote the paper. S.Z. performed MS analysis, analyzed MS data and wrote the paper. A.C.F. conceptualized project, designed research and analyzed data. M.P.D. conceptualized project, designed research, analyzed data and wrote the paper.

Corresponding author

Correspondence to Matthew P DeLisa.

Ethics declarations

Competing interests

A.C.F. is an employee of Glycobia, Inc. A.C.F. and M.P.D. have a financial interest in Glycobia, Inc.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–8. (PDF 26657 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ollis, A., Zhang, S., Fisher, A. et al. Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity. Nat Chem Biol 10, 816–822 (2014). https://doi.org/10.1038/nchembio.1609

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1609

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing