Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flow chemistry and polymer-supported pseudoenantiomeric acylating agents enable parallel kinetic resolution of chiral saturated N-heterocycles

Abstract

Kinetic resolution is a common method to obtain enantioenriched material from a racemic mixture. This process will deliver enantiopure unreacted material when the selectivity factor of the process, s, is greater than 1; however, the scalemic reaction product is often discarded. Parallel kinetic resolution, on the other hand, provides access to two enantioenriched products from a single racemic starting material, but suffers from a variety of practical challenges regarding experimental design that limit its applications. Here, we describe the development of a flow-based system that enables practical parallel kinetic resolution of saturated N-heterocycles. This process provides access to both enantiomers of the starting material in good yield and high enantiopurity; similar results with classical kinetic resolution would require selectivity factors in the range of s = 100. To achieve this, two immobilized quasienantiomeric acylating agents were designed for the asymmetric acylation of racemic saturated N-heterocycles. Using the flow-based system we could efficiently separate, recover and reuse the polymer-supported reagents. The amide products could be readily separated and hydrolysed to the corresponding amines without detectable epimerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of kinetic and parallel kinetic resolution.
Figure 2: Acylating agents and s factors afforded in kinetic resolution.
Figure 3: Amide product hydrolysis.

Similar content being viewed by others

References

  1. Keith, J. M., Larrow, J. F. & Jacobsen, E. N. Practical considerations in kinetic resolution reactions. Adv. Synth. Catal. 343, 5–26 (2001).

    CAS  Google Scholar 

  2. Kagan, H. B. & Fiaud, J.-C. Kinetic resolution. Top. Stereochem. 18, 249–330 (1988).

    CAS  Google Scholar 

  3. Vedejs, E. & Jure, M. Efficiency in nonenzymatic kinetic resolution. Angew. Chem. Int. Ed. Engl. 44, 3974–4001 (2005).

    CAS  PubMed  Google Scholar 

  4. Russell, T. A. & Vedejs, E. in Separation of enantiomers: synthetic methods (ed. Todd, M.) 216–262 (Wiley-VCH, 2014).

    Google Scholar 

  5. Vedejs, E. & Chen, X. Parallel kinetic resolution. J. Am. Chem. Soc. 119, 2584–2585 (1997).

    CAS  Google Scholar 

  6. Dehli, J. R. & Gotor, V. Parallel kinetic resolution of racemic mixtures: a new strategy for the preparation of enantiopure compounds? Chem. Soc. Rev 31, 365–370 (2002).

    CAS  PubMed  Google Scholar 

  7. Vedejs, E. & Rozners, E. Parallel kinetic resolution under catalytic conditions : a three-phase system allows selective reagent activation using two catalysts. J. Am. Chem. Soc. 123, 2428–2429 (2001).

    CAS  PubMed  Google Scholar 

  8. Duffey, T. A., MacKay, J. A. & Vedejs, E. Catalytic parallel kinetic resolution under homogeneous conditions. J. Org. Chem. 75, 4674–4685 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Liao, L. A., Zhang, F., Dmitrenko, O., Bach, R. D. & Fox, J. M. A reactivity/affinity switch for parallel kinetic resolution: α-amino acid quasienantiomers and the resolution of cyclopropene carboxylic acids. J. Am. Chem. Soc. 126, 4490–4491 (2004).

    CAS  PubMed  Google Scholar 

  10. Kamlet, A. S., Préville, C., Farley, K. A. & Piotrowski, D. W. Regioselective hydroarylations and parallel kinetic resolution of vince lactam. Angew. Chem. Int. Ed. 52, 10607–10610 (2013).

    CAS  Google Scholar 

  11. Wu, B., Parquette, J. R. & RajanBabu, T. V. Regiodivergent ring opening of chiral aziridines. Science 326, 1662 (2009).

    CAS  PubMed  Google Scholar 

  12. Langlois, J. B. & Alexakis, A. Identification of a valuable kinetic process in copper-catalyzed asymmetric allylic alkylation. Angew. Chem. Int. Ed. 50, 1877–1881 (2011).

    CAS  Google Scholar 

  13. Bertozzi, F., Crotti, P., Macchia, F., Pineschi, M. & Feringa, B. Highly enantioselective regiodivergent and catalytic parallel kinetic resolution. Angew. Chem. Int. Ed. 40, 930–932 (2001).

    CAS  Google Scholar 

  14. Tanaka, K. & Fu, G. C. Parallel kinetic resolution of 4-alkynals catalyzed by Rh(I)/Tol-BINAP: synthesis of enantioenriched cyclobutanones and cyclopentenones. J. Am. Chem. Soc. 125, 8078–8079 (2003).

    CAS  PubMed  Google Scholar 

  15. Webster, R., Böing, C. & Lautens, M. Reagent-controlled regiodivergent resolution of unsymmetrical oxabicyclic alkenes using a cationic rhodium catalyst. J. Am. Chem. Soc. 131, 444–445 (2009).

    CAS  PubMed  Google Scholar 

  16. Chavez, D. E. & Jacobsen, E. N. Catalyst-controlled inverse-electron-demand hetero-Diels-Alder reactions in the enantio- and diastereoselective synthesis of iridoid natural products. Org. Lett. 5, 2563–2565 (2003).

    CAS  PubMed  Google Scholar 

  17. Dehli, J. R. & Gotor, V. Preparation of enantiopure ketones and alcohols containing a quaternary stereocenter through parallel kinetic resolution of β-keto nitriles. J. Org. Chem. 67, 1716–1718 (2002).

    CAS  PubMed  Google Scholar 

  18. Abril, O. & Whitesides, G. M. Hybrid organometallic/enzymic catalyst systems: regeneration of NADH using dihydrogen. J. Am. Chem. Soc. 104, 1552–1554 (1982).

    CAS  Google Scholar 

  19. Doyle, M. P. et al. Highly selective enantiomer differentiation in intramolecular cyclopropanation reactions of racemic secondary allylic diazoacetates. J. Am. Chem. Soc. 117, 11021–11022 (1995).

    CAS  Google Scholar 

  20. Kreituss, I. et al. Robust, recyclable resin for decagram scale resolution of (±)-mefloquine and other chiral N-heterocycles. Angew. Chem. Int. Ed. 55, 1553–1556 (2015).

    Google Scholar 

  21. Pastre, J. C., Browne, D. L. & Ley, S. V. Flow chemistry syntheses of natural products. Chem. Soc. Rev. 42, 8849–8869 (2013).

    CAS  PubMed  Google Scholar 

  22. Atodiresei, I., Vila, C. & Rueping, M. Asymmetric organocatalysis in continuous flow: opportunities for impacting industrial catalysis. ACS Catal. 5, 1972–1985 (2015).

    CAS  Google Scholar 

  23. Webb, D. & Jamison, T. F. Continuous flow multi-step organic synthesis. Chem. Sci. 1, 675–680 (2010).

    CAS  Google Scholar 

  24. Snead, D. R. & Jamison, T. F. A three-minute synthesis and purification of ibuprofen: pushing the limits of continuous-flow processing. Angew. Chem. Int. Ed. 54, 983–987 (2015).

    CAS  Google Scholar 

  25. Battilocchio, C. et al. Iterative reactions of transient boronic acids enable sequential C–C bond formation. Nat. Chem. 8, 360–367 (2016).

    CAS  PubMed  Google Scholar 

  26. Adamo, A. et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science 352, 61–67 (2016).

    CAS  PubMed  Google Scholar 

  27. Chen, M. & Buchwald, S. L. Rapid and efficient trifluoromethylation of aromatic and heteroaromatic compounds using potassium trifluoroacetate enabled by a flow system. Angew. Chem. Int. Ed. 52, 11628–11631 (2013).

    CAS  Google Scholar 

  28. Shu, W. & Buchwald, S. L. Enantioselective β-arylation of ketones enabled by lithiation/borylation/1,4-addition sequence under flow conditions. Angew. Chem. Int. Ed. 51, 5355–5358 (2012).

    CAS  Google Scholar 

  29. Ganiek, M. A., Becker, M. R., Ketels, M. & Knochel, P. Continuous flow magnesiation or zincation of acrylonitriles, acrylates, and nitroolefins. application to the synthesis of butenolides. Org. Lett. 18, 828–831 (2016).

    CAS  PubMed  Google Scholar 

  30. Mallia, C. J. & Baxendale, I. R. The use of gases in flow synthesis. Org. Process Res. Dev. 20, 327–360 (2015).

    Google Scholar 

  31. Dong, K., Sun, C. H., Song, J. W., Wei, G. X. & Pang, S. P. Synthesis of 2,6,8,12-tetraacetyl-2,4,6,8,10,12-hexaazaisowurtzitane (TAIW) from 2,6,8,12-tetraacetyl-4,10-dibenzyl-2,4,6,8,10,12-hexaazaisowurtzitane (TADBIW) by catalytic hydrogenolysis using a continuous flow process. Org. Process Res. Dev. 18, 1321–1325 (2014).

    CAS  Google Scholar 

  32. Baxendale, I. R., Ley, S. V., Mansfield, A. C. & Smith, C. D. Multistep synthesis using modular flow reactors: Bestmann-Ohira reagent for the formation of alkynes and triazoles. Angew. Chem. Int. Ed. 48, 4017–4021 (2009).

    CAS  Google Scholar 

  33. Annis, D. A. & Jacobsen, E. N. Polymer-supported chiral Co (Salen) complexes: synthetic applications and mechanistic investigations in the hydrolytic kinetic resolution of terminal epoxides. J. Am. Chem. Soc. 121, 4147–4154 (1999).

    CAS  Google Scholar 

  34. Adint, T. T. & Landis, C. R. Immobilized bisdiazaphospholane catalysts for asymmetric hydroformylation. J. Am. Chem. Soc. 136, 7943–7953 (2014).

    CAS  PubMed  Google Scholar 

  35. Kamahori, K., Ito, K. & Itsuno, S. Asymmetric diels-Alder reaction of methacrolein with cyclopentadiene using polymer-supported catalysts: design of highly enantioselective polymeric catalysts. J. Org. Chem. 61, 8321–8324 (1996).

    CAS  PubMed  Google Scholar 

  36. Csajagi, C. et al. Enantiomer selective acylation of racemic alcohols by lipases in continuous-flow bioreactors. Tetrahedron Asymmetry 19, 237–246 (2008).

    CAS  Google Scholar 

  37. Hutchby, M. et al. Switching pathways: room-temperature neutral solvolysis and substitution of amides. Angew. Chem. Int. Ed. 51, 548–551 (2012).

    CAS  Google Scholar 

  38. Debenham, J. S. Madsen, R. Roberts, C. & Fraser-Reid, B. Two new orthogonal amine-protecting groups that can be cleaved under mild or neutral conditions. J. Am. Chem. Soc. 117, 3302–3303 (1995).

    CAS  Google Scholar 

  39. Entwistle, I. D. The use of 2-nitrophenylpropionic acid as a protecting group for amino and hydroxyl functions to be recovered by hydrogen transfer hydrogenation. Tetrahedron Lett. 6, 555–558 (1979).

    Google Scholar 

  40. Shirakawa, S. & Maruoka, K. Recent developments in asymmetric phase-transfer reactions. Angew. Chem. Int. Ed. 52, 4312–4348 (2013).

    CAS  Google Scholar 

  41. Isley, N. A., Linstadt, R. T. H., Kelly, S. M., Gallou, F. & Lipshutz, B. H. Nucleophilic aromatic substitution reactions in water enabled by micellar catalysis. Org. Lett. 17, 4734–4737 (2015).

    CAS  PubMed  Google Scholar 

  42. La Sorella, G., Strukul, G. & Scarso, A. Recent advances in catalysis in micellar media. Green Chem. 17, 644–683 (2015).

    CAS  Google Scholar 

  43. Kobayashi, S. Flow ‘fine’ synthesis: high yielding and selective organic synthesis by flow methods. Chem. Asian J. 11, 425–436 (2016).

    CAS  PubMed  Google Scholar 

  44. Hyster, T. K., Knorr, L., Ward, T. R. & Rovis, T. Biotinylated Rh(III) complexes in asymmetric C–H activation. Science 338, 500–503 (2012).

    CAS  PubMed  Google Scholar 

  45. Paetzold, J. & Bäckvall, J. E. Chemoenzymatic dynamic kinetic resolution of primary amines. J. Am. Chem. Soc. 127, 17620–17621 (2005).

    CAS  PubMed  Google Scholar 

  46. Denard, C. A. et al. Development of a one-pot tandem reaction combining ruthenium-catalyzed alkene metathesis and enantioselective enzymatic oxidation to produce aryl epoxides. ACS Catal. 5, 3817–3822 (2015).

    CAS  Google Scholar 

  47. Allen, A. E. & MacMillan, D. W. C. Synergistic catalysis: a powerful synthetic strategy for new reaction development. Chem. Sci. 3, 633–658 (2012).

    CAS  Google Scholar 

  48. Hafez, A. M., Taggi, A. E., Dudding, T. & Lectka, T. Asymmetric catalysis on sequentially-linked columns. J. Am. Chem. Soc. 123, 10853–10859 (2001).

    CAS  PubMed  Google Scholar 

  49. Hafez, A. M., Taggi, A. E. & Lectka, T. Column asymmetric catalysis. Chem. Eur. J. 8, 4114–4119 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council (ERC Starting Grant no. 306793-CASAA) and the Swiss Federal Commission for Technology and Innovation (CTI 15523.1). S.-Y. Hsieh, B. Wanner and K.-Y. Chen (all ETH) are thanked for helpful discussions and advice with flow-based systems.

Author information

Authors and Affiliations

Authors

Contributions

J.W.B. and I.K. contributed equally to the design of the study. J.W.B. and I.K. co-wrote the paper. I.K. performed the experiments and wrote the Supplementary Information.

Corresponding author

Correspondence to Jeffrey W. Bode.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7792 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreituss, I., Bode, J. Flow chemistry and polymer-supported pseudoenantiomeric acylating agents enable parallel kinetic resolution of chiral saturated N-heterocycles. Nature Chem 9, 446–452 (2017). https://doi.org/10.1038/nchem.2681

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2681

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing