Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Wrong but seminal

Publishing the wrong interpretation of experimental data can result in an immediate horde of chemists feeding on the error like vultures. On rare occasions, this phenomenon can open up an entire new field of science — and the structure of ferrocene is a case in point.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peter Pauson and Thomas J. Kealy published the first paper in the ferrocene timeline.
Figure 2: Proposed structures of dicyclopentadienyl iron.
Figure 3: R. B. Woodward and Geoffrey Wilkinson were the Harvard-based protagonists of the ferrocene story in the early 1950s.
Figure 4: A representation of the first publications of the key chemists studying the preparation, structure and properties of ferrocene and the connections between them.
Figure 5: Buckminsterfullerene and data from the 1985 Nature paper29 from Kroto and co-workers.
Figure 6: Robert K. Merton, an eminent sociologist of science who introduced concepts such as 'obliteration by incorporation' and the 'Matthew effect', both of which are relevant in the story of ferrocene.
Figure 7: Peter Pauson at the dinner table of E. O. Fischer, 1955.
Figure 8: R. B. Woodward plants the seeds of a potential scientific collaboration (that never came to fruition).

References

  1. Kealy, T. J. & Pauson, P. L. Nature 168, 1039–1040 (1951).

    Article  CAS  Google Scholar 

  2. Pauson, P. L. J. Organomet. Chem. 637639, 3–6 (2001).

    Article  Google Scholar 

  3. Pauson, P. L. Quart. Rev. Chem. Soc. 9, 391–414 (1955).

    Article  CAS  Google Scholar 

  4. Wilkinson, G. J. Organomet. Chem. 100, 273–278 (1975).

    Article  CAS  Google Scholar 

  5. Dunitz, J. D. Helv. Chim. Acta 96, 545–563 (2013).

    Article  CAS  Google Scholar 

  6. Dunitz, J. D. in Organic Chemistry: Its Language and Its State of the Art (ed. Kisakurek, V.) 9–23 (Wiley-VCH, 1993).

    Google Scholar 

  7. Laszlo, P. & Hoffmann, R. Angew. Chem. Int. Ed. 39, 123–124 (2000).

    Article  CAS  Google Scholar 

  8. Zydowsky, T. M. Chem. Intell. 6, 29–34 (2000).

    CAS  Google Scholar 

  9. Hoffmann, R. & Laszlo, P. Soc. Res. 65, 653–694 (1998).

    Google Scholar 

  10. Werner, H. Angew. Chem. Int. Ed. 53, 3309 (2014).

    Article  CAS  Google Scholar 

  11. Cantrill, S. in Milestones in Crystallography http://dx.doi.org/10.1038/nature13357 (2014).

    Google Scholar 

  12. Wilkinson, G., Rosenblum, M., Whiting, M. C. & Woodward, R. B. J. Am. Chem. Soc. 74, 2125–2126 (1952).

    Article  CAS  Google Scholar 

  13. Miller, S. A., Tebboth, J. A. & Tremaine, J. F. J. Chem. Soc. 632–635 (1952).

  14. Kauffman, G. B. J. Chem. Educ. 60, 185–186 (1983).

    Article  CAS  Google Scholar 

  15. Woodward, R. B., Rosenblum, M. & Whiting, M. C. J. Am. Chem. Soc. 74, 3458–3459 (1952).

    Article  CAS  Google Scholar 

  16. Cotton, F. A. & Wilkinson, G. J. Am. Chem. Soc. 74, 5764–5767 (1952).

    Article  CAS  Google Scholar 

  17. Page, J. A. & Wilkinson, G. J. Am. Chem. Soc. 74, 6149–6150 (1952).

    Article  CAS  Google Scholar 

  18. Wilkinson, G. J. Am. Chem. Soc. 74, 6146–6147 (1952).

    Article  CAS  Google Scholar 

  19. Wilkinson, G. J. Am. Chem. Soc. 74, 6148–6149 (1952).

    Article  CAS  Google Scholar 

  20. Seeman, J. I. J. Phys. Org. Chem. 27, 708–721 (2014).

    Article  CAS  Google Scholar 

  21. Fischer, E. O. & Pfab, W. Z. Naturforsch. B 7, 377–379 (1952).

    Article  Google Scholar 

  22. Eiland, P. F. & Pepinsky, R. J. Am. Chem. Soc. 74, 4971 (1952).

    Article  CAS  Google Scholar 

  23. Dunitz, J. D. & Orgel, L. E. Nature 171, 121–122 (1953).

    Article  CAS  Google Scholar 

  24. Richmond, H. H. & Freiser, H. J. Am. Chem. Soc. 77, 2022–2023 (1955).

    Article  CAS  Google Scholar 

  25. Jaffé, H. J. Chem. Phys. 21, 156–157 (1952).

    Article  Google Scholar 

  26. Moffitt, W. J. Am. Chem. Soc. 76, 3386–3392 (1954).

    Article  CAS  Google Scholar 

  27. Kaplan, L., Kester, W. J. & Katz, J. J. J. Am. Chem. Soc. 74, 5531–5532 (1952).

    Article  CAS  Google Scholar 

  28. Vale, R. D. Proc. Natl Acad. Sci. USA 112, 13439–13446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kroto, H., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. Nature 318, 162–163 (1985).

    Article  CAS  Google Scholar 

  30. Krätschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Nature 347, 354–358 (1990).

    Article  Google Scholar 

  31. Toumey, C. Nature Nanotech. 5, 693–694 (2010).

    Article  CAS  Google Scholar 

  32. Nature Nanotech. 5, 691 (2010).

  33. Sankey, H. Stud. Hist. Phil. Sci. 39, 259–264 (2008).

    Article  Google Scholar 

  34. Merton, R. K. Proc. Am. Phil. Soc. 105, 470–486 (1961).

    Google Scholar 

  35. Dunitz, J. D. & Orgel, L. E. J. Chem. Soc. 2594–2596 (1953).

  36. Merton, R. K. Isis 79, 606–623 (1988).

    Article  Google Scholar 

  37. Merton, R. K. Science 159, 56–63 (1968).

    Article  PubMed  Google Scholar 

  38. Werner, H. Angew. Chem. Int. Ed. 51, 6052–6058 (2012).

    Article  CAS  Google Scholar 

  39. Merton, R. K. Soc. Forces 74, 379–424 (1995).

    Article  Google Scholar 

  40. Donahue, C. J. & Donahue, E. R. J. Chem. Educ. 90, 1688–1691 (2013).

    Article  CAS  Google Scholar 

  41. Nataro, C. & Fosbenner, S. M. J. Chem. Educ. 86, 1412–1415 (2009).

    Article  CAS  Google Scholar 

  42. Hwa, R. & Weizman, H. J. Chem. Educ. 84, 1497–1498 (2007).

    Article  CAS  Google Scholar 

  43. Birdwhistell, K. R., Nguyen, A., Ramos, E. J. & Kobelja, R. J. Chem. Educ. 85, 261–262 (2008).

    Article  CAS  Google Scholar 

  44. Woodward, R. B. & Doering, W. E. J. Am. Chem. Soc. 66, 849 (1944).

    Google Scholar 

  45. Doering, W. von E. & Detert, F. L. J. Am. Chem. Soc. 73, 876–877 (1951).

    Article  CAS  Google Scholar 

  46. Dewar, M. J. S. Nature 155, 50–51 (1945).

    Article  CAS  Google Scholar 

  47. Nozoe, T. in Seventy Years in Organic Chemistry (ed. Seeman, J. I.) (Profiles, Pathways, and Dreams series, American Chemical Society, 1991).

    Google Scholar 

  48. Wilkinson, G., Pauson, P. L. & Cotton, F. A. J. Am. Chem. Soc. 76, 1970–1974 (1954).

    Article  CAS  Google Scholar 

  49. Pauson, P. L. & Wilkinson, G. J. Am. Chem. Soc. 76, 2024–2026 (1954).

    Article  CAS  Google Scholar 

  50. Wilkinson, G., Pauson, P. L., Birmingham, J. M. & Cotton, F. A. J. Am. Chem. Soc. 75, 1011–1012 (1953).

    Article  CAS  Google Scholar 

  51. Graening, T. & Schmalz, H.-G. Angew. Chem. Int. Ed. 43, 3230–3256 (2004).

    Article  CAS  Google Scholar 

  52. Bentley, R. J. Chem. Educ. 81, 1462–1470 (2004).

    Article  CAS  Google Scholar 

  53. Sayre, D. & Frazer, B. C. J. Appl. Crystal. 28, 245–246 (1995).

    Article  Google Scholar 

  54. Battersby, A. R. in Further Perspectives in Organic Chemistry (ed. Lord Todd) 50 (Elsevier, 1978).

    Google Scholar 

  55. Barton, D. H. R. Some Recollections of Gap Jumping (ed. Seeman, J. I.) (Profiles, Pathways, and Dreams series, American Chemical Society, 1991).

    Google Scholar 

  56. Quack, M. Angew. Chem. Int. Ed. 52, 2–11 (2013).

    Article  CAS  Google Scholar 

  57. Laszlo, P. Angew. Chem. Int. Ed. 39, 2071–2072 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank a number of journal editors for sharing their criteria for publication, including A. Padwa and S. Rychnovsky (The Journal of Organic Chemistry). J.I.S. thanks W. Myers (University of Richmond) and R. Wheeler (Duquesne University) for being catalysts for this project and the Harvard University Archives for their hospitality. We also thank O. T. Benfey, J. Dunitz, A. Eschenmoser, J. Gal, G. S. Girolami, R. Hoffmann, H. Kroto, P. Laszlo and W. Myers for helpful discussions. We dedicate this paper to the memory of Robert K. Merton (1910–2003). Today, many of his concepts, three of which are discussed in this manuscript and others, such as 'role model', 'self-fulfilling prophecy' and 'unintended consequences', are so much a part of today's lexicon that his inventorship of them is relatively unknown according to his own concept, 'obliteration by incorporation'.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeffrey I. Seeman or Stuart Cantrill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seeman, J., Cantrill, S. Wrong but seminal. Nature Chem 8, 193–200 (2016). https://doi.org/10.1038/nchem.2455

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2455

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing