Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Orthogonal tandem catalysis

Subjects

A Corrigendum to this article was published on 23 June 2015

This article has been updated

Abstract

Tandem catalysis is a growing field that is beginning to yield important scientific and technological advances toward new and more efficient catalytic processes. 'One-pot' tandem reactions, where multiple catalysts and reagents, combined in a single reaction vessel undergo a sequence of precisely staged catalytic steps, are highly attractive from the standpoint of reducing both waste and time. Orthogonal tandem catalysis is a subset of one-pot reactions in which more than one catalyst is used to promote two or more mechanistically distinct reaction steps. This Perspective summarizes and analyses some of the recent developments and successes in orthogonal tandem catalysis, with particular focus on recent strategies to address catalyst incompatibility. We also highlight the concept of thermodynamic leveraging by coupling multiple catalyst cycles to effect challenging transformations not observed in single-step processes, and to encourage application of this technique to energetically unfavourable or demanding reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of orthogonal tandem catalytic systems.
Figure 2: Physical separation of catalysts can be essential.
Figure 3: Scenario for tandem catalytic ether hydrogenolysis via retro-hydroalkoxylation.

Similar content being viewed by others

Change history

  • 01 June 2015

    In the version of this Perspective originally published, Figure 2a should have depicted the conversion of CO2 to formic acid and on to a formate ester. This error has now been corrected in all online versions.

  • 23 June 2015

    Nature Chemistry 7, 477–482 (2015); published online 20 May 2015; corrected after print 1 June 2015. In the version of this Perspective originally published, Figure 2a should have depicted the conversion of CO2 to formic acid and on to a formate ester. The corrected reaction pathway is shown below. This error has now been corrected in all online versions.

References

  1. Climent, M. J., Corma, A, Iborra, S. & Sabater, M. J. Heterogeneous catalysis for tandem reactions. ACS Catal. 4, 870–891 (2014).

    Article  CAS  Google Scholar 

  2. Mata, J. A., Hahn, F. E. & Peris, E. Heterometallic complexes, tandem catalysis and catalytic cooperativity. Chem. Sci. 5, 1723–1732 (2014).

    Article  CAS  Google Scholar 

  3. Robert, C. & Thomas, C. M. Tandem catalysis: a new approach to polymers. Chem. Soc. Rev. 42, 9392–9402 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Oroz-Guinea, I. & Garcia-Junceda, E. Enzyme catalysed tandem reactions. Curr. Opin. Chem. Biol. 17, 236–249 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Climent, M. J., Corma, A. & Iborra, S. Homogeneous and heterogeneous catalysts for multicomponent reactions. R. Soc. Chem. Adv. 2, 16–58 (2012).

    CAS  Google Scholar 

  6. Zhou, J. Recent advances in multicatalyst promoted asymmetric tandem reactions. Chem. Asian J. 5, 422–434 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Atesin, A. C., Ray, N. A., Stair, P. C. & Marks, T. J. Etheric C–O bond hydrogenolysis using a tandem lanthanide triflate/supported palladium nanoparticle catalyst system. J. Am. Chem. Soc. 134, 14682–14685 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Li, Z., Assary, R. S., Atesin, A. C., Curtiss, L. A. & Marks, T. J. Rapid ether and alcohol C–O bond hydrogenolysis catalyzed by tandem high-valent metal triflate plus supported Pd catalysts. J. Am. Chem. Soc. 136, 104–107 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, X. & Rinaldi, R. A route for lignin and bio-oil conversion: dehydroxylation of phenols into arenes by catalytic tandem reactions. Angew. Chem. Int. Ed. 52, 11499–11503 (2013).

    Article  CAS  Google Scholar 

  10. Barber, D. M., Ďuriš, A., Thompson, A. L., Sanganee, H. J. & Dixon, D. J. One-pot asymmetric nitro-mannich/hydroamination cascades for the synthesis of pyrrolidine derivatives: combining organocatalysis and gold catalysis. ACS Catal. 4, 634–638 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dydio, P., Ploeger, M. & Reek, J. N. H. Selective isomerization–hydroformylation sequence: a strategy to valuable α-methyl-branched aldehydes from terminal olefins. ACS Catal. 3, 2939–2942 (2013).

    Article  CAS  Google Scholar 

  12. Fogg, D. E. & dos Santos, E. N. Tandem catalysis: a taxonomy and illustrative review. Coord. Chem. Rev. 248, 2365–2379 (2004).

    Article  CAS  Google Scholar 

  13. Braddock, D. C. & Matsuno, A. In situ tandem allylic acetate isomerisation-ring closing metathesis: 1, 3-dimesityl-4, 5-dihydroimidazol-2-ylidene ruthenium benzylidenes and palladium(0)-phosphine combinations. Tetrahed. Lett. 43, 3305–3308 (2002).

    Article  CAS  Google Scholar 

  14. Rueping, M., Dufour, J. & Bui, L. Convergent catalysis: asymmetric synthesis of dihydroquinolines using a combined metal catalysis and organocatalysis approach. ACS Catal. 4, 1021–1025 (2014).

    Article  CAS  Google Scholar 

  15. Leitch, D. C., Labinger, J. A. & Bercaw, J. E. Scope and mechanism of homogeneous tantalum/iridium tandem catalytic alkane/alkene upgrading using sacrificial hydrogen acceptors. Organometallics 33, 3353–3365 (2014).

    Article  CAS  Google Scholar 

  16. Yuki, Y., Takahashi, K., Tanaka, Y. & Nozaki, K. Tandem isomerization/hydroformylation/hydrogenation of internal alkenes to n-alcohols using Rh/Ru dual- or ternary-catalyst systems. J. Am. Chem. Soc. 135, 17393–17400 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Leitch, D. C., Lam, Y. C., Labinger, J. A. & Bercaw, J. E. Upgrading light hydrocarbons via tandem catalysis: a dual homogeneous Ta/Ir system for alkane/alkene coupling. J. Am. Chem. Soc. 135, 10302–10305 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Assary, R. S., Atesin, A. C., Li, Z., Curtiss, L. A. & Marks, T. J. Reaction pathways and energetics of etheric C-O bond cleavage catalyzed by lanthanide triflates. ACS Catal. 3, 1908–1914 (2013).

    Article  CAS  Google Scholar 

  19. Haibach, M. C., Kundu, S., Brookhart, M. & Goldman, A. S. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry. Acc. Chem. Res. 45, 947–958 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Peng, W-H., Lee, Y-Y., Wu, C. & Wu, K. C. W. Acid–base bi-functionalized, large-pored mesoporous silica nanoparticles for cooperative catalysis of one-pot cellulose-to-HMF conversion. J. Mater. Chem. 22, 23181–23185 (2012).

    Article  CAS  Google Scholar 

  21. McInnis, J. P., Delferro, M. & Marks, T. J. Multinuclear group 4 catalysis: olefin polymerization pathways modified by strong metal–metal cooperative effects. Acc. Chem. Res. 47, 2545–2557 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Delferro, M. & Marks, T. J. Multinuclear olefin polymerization catalysts. Chem. Rev. 111, 2450–2485 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Al-Amin, M., Roth, K. E. & Blum, S. A. Mechanistic studies of gold and palladium cooperative dual-catalytic cross-coupling systems. ACS Catal. 4, 622–629 (2013).

    Article  CAS  Google Scholar 

  24. Popoff, N., Mazoyer, E., Pelletier, J., Gauvin, R. M. & Taoufik, M. Expanding the scope of metathesis: a survey of polyfunctional, single-site supported tungsten systems for hydrocarbon valorization. Chem. Soc. Rev. 42, 9035–9054 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Wasilke, J. C., Obrey, S. J., Baker, R. T. & Bazan, G. C. Concurrent tandem catalysis. Chem. Rev. 105, 1001–1020 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, C. Y., O'Rear, D. J. & Leung, P. Molecular redistribution and molecular averaging: disproportionation of paraffins via bifunctional catalysis. Top. Catal. 55, 1344–1361 (2012).

    Article  CAS  Google Scholar 

  27. Biswas, S. et al. Olefin isomerization by iridium pincer catalysts. experimental evidence for an eta(3)-allyl pathway and an unconventional mechanism predicted by DFT calculations. J. Am. Chem. Soc. 134, 13276–13295 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Krogh-Jespersen, K. et al. On the mechanism of (PCP)Ir-catalyzed acceptorless dehydrogenation of alkanes: A combined computational and experimental study. J. Am. Chem. Soc. 124, 11404–11416 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Basset, J. M., Coperet, C., Soulivong, D., Taoufik, M. & Cazat, J. T. Metathesis of alkanes and related reactions. Acc. Chem. Res. 43, 323–334 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Huang, Z. et al. Highly active and recyclable heterogeneous iridium pincer catalysts for transfer dehydrogenation of alkanes. Adv. Synth. Catal. 351, 188–206 (2009).

    Article  CAS  Google Scholar 

  31. Dobereiner, G. E., Yuan, J., Schrock, R. R., Goldman, A. S. & Hackenberg, J. D. Catalytic synthesis of n-alkyl arenes through alkyl group cross-metathesis. J. Am. Chem. Soc. 135, 12572–12575 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Mclain, S. J., Sancho, J. & Schrock, R. R. Selective dimerization of monosubstituted alpha-olefins by tantalacyclopentane catalysts. J. Am. Chem. Soc. 102, 5610–5618 (1980).

    Article  CAS  Google Scholar 

  33. Mclain, S. J., Schrock, R. R., Sharp, P. R., Churchill, M. R. & Youngs, W. J. Synthesis of monomeric niobium-benzyne and tantalum-benzyne benzyne complexes and the molecular-structure of Ta(Eta-5-C5Me5)(C6H4)Me2 . J. Am. Chem. Soc. 101, 263–265 (1979).

    Article  CAS  Google Scholar 

  34. Mclain, S. J., Sancho, J. & Schrock, R. R. Metallacyclopentane to metallacyclobutane ring contraction. J. Am. Chem. Soc. 101, 5451–5453 (1979).

    Article  CAS  Google Scholar 

  35. Goldman, A. S. et al. Catalytic alkane metathesis by tandem alkane dehydrogenation olefin metathesis. Science 312, 257–261 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Choi, J., MacArthur, A. H., Brookhart, M. & Goldman, A. S. Dehydrogenation and related reactions catalyzed by iridium pincer complexes. Chem. Rev. 111, 1761–1779 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Ohlmann, D. M. et al. Isomerizing olefin metathesis as a strategy to access defined distributions of unsaturated compounds from fatty acids. J. Am. Chem. Soc. 134, 13716–13729 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Dobereiner, G. E., Erdogan, G., Larsen, C. R., Grotjahn, D. B. & Schrock, R. R. A one-pot tandem olefin isomerization/metathesis-coupling (ISOMET) reaction. ACS Catal. 3069–3076 (2014).

  39. Keim, W. Oligomerization of ethylene to alpha-olefins: discovery and development of the shell higher olefin process (SHOP). Angew. Chem. Int. Ed. 52, 12492–12496 (2013).

    Article  CAS  Google Scholar 

  40. Huff, C. A. & Sanford, M. S. Cascade catalysis for the homogeneous hydrogenation of CO2 to Methanol. J. Am. Chem. Soc. 133, 18122–18125 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Huang, H. et al. Tandem catalytic conversion of glucose to 5-hydroxymethylfurfural with an immobilized enzyme and a solid acid. ACS Catal. 4, 2165–2168 (2014).

    Article  CAS  Google Scholar 

  42. Mascal, M. & Nikitin, E. B. Direct, high-yield conversion of cellulose into biofuel. Angew. Chem. Int. Ed. 47, 7924–7926 (2008).

    Article  CAS  Google Scholar 

  43. Huang, R. L., Qi, W., Su, R. X. & He, Z. M. Integrating enzymatic and acid catalysis to convert glucose into 5-hydroxymethylfurfural. Chem. Commun. 46, 1115–1117 (2010).

    Article  CAS  Google Scholar 

  44. Yang, G., Pidko, E. A. & Hensen, E. J. M. Mechanism of Bronsted acid-catalyzed conversion of carbohydrates. J. Catal. 295, 122–132 (2012).

    Article  CAS  Google Scholar 

  45. Simeonov, S. P., Coelho, J. A. S. & Afonso, C. A. M. Integrated chemo-enzymatic production of 5-hydroxymethylfurfural from glucose. ChemSusChem 6, 997–1000 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Grande, P. M., Bergs, C. & de Maria, P. D. Chemo-enzymatic conversion of glucose into 5-hydroxymethylfurfural in seawater. ChemSusChem 5, 1203–1206 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Martin-Matute, B., Edin, M., Bogar, K., Kaynak, F. B. & Bäckvall, J. E. Combined ruthenium(II) and lipase catalysis for efficient dynamic kinetic resolution of secondary alcohols. Insight into the racemization mechanism. J. Am. Chem. Soc. 127, 8817–8825 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Martin-Matute, B., Edin, M., Bogar, K. & Bäckvall, J. E. Highly compatible metal and enzyme catalysts for efficient dynamic kinetic resolution of alcohols at ambient temperature. Angew. Chem. Int. Ed. 43, 6535–6539 (2004).

    Article  CAS  Google Scholar 

  49. Panteleev, J., Zhang, L. & Lautens, M. Domino rhodium-catalyzed alkyne arylation/palladium-catalyzed N arylation: a mechanistic investigation. Angew. Chem. Int. Ed. 50, 9089–9092 (2011).

    Article  CAS  Google Scholar 

  50. Friedman, A. A., Panteleev, J., Tsoung, J., Huynh, V. & Lautens, M. Rh/Pd catalysis with chiral and achiral ligands: domino synthesis of aza-dihydrodibenzoxepines. Angew. Chem. Int. Ed. 52, 9755–9758 (2013).

    Article  CAS  Google Scholar 

  51. Seo, S. Y., Yu, X. H. & Marks, T. J. Intramolecular hydroalkoxylation/cyclization of alkynyl alcohols mediated by lanthanide catalysts. scope and reaction mechanism. J. Am. Chem. Soc. 131, 263–276 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Dzudza, A. & Marks, T. J. Efficient intramolecular hydroalkoxylation of unactivated alkenols mediated by recyclable lanthanide triflate ionic liquids: scope and mechanism. Chem. Eur. J. 16, 3403–3422 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Dzudza, A. & Marks, T. J. Efficient intramolecular hydroalkoxylation/cyclization of unactivated alkenols mediated by lanthanide triflate ionic liquids. Org. Lett. 11, 1523–1526 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Sutton, A. D. et al. The hydrodeoxygenation of bioderived furans into alkanes. Nature Chem. 5, 428–432 (2013).

    Article  CAS  Google Scholar 

  55. Schwartz, T. J. et al. Integration of chemical and biological catalysis: production of furylglycolic acid from glucose via cortalcerone. ACS Catal. 3, 2689–2693 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy under contract DE-AC0206CH11357 to the EFRC Institute for Atom-Efficient Chemical Transformations, and by NSF grant CHE-1213,235 on basic f-element chemistry which supported T.L.L. We thank M. Delferro and R. S. Assary for comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobin J. Marks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohr, T., Marks, T. Orthogonal tandem catalysis. Nature Chem 7, 477–482 (2015). https://doi.org/10.1038/nchem.2262

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2262

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing