Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unifying views on catalyst deactivation

Abstract

Berzelius stated that catalysts remain unaltered in their reaction environment. However, catalyst deactivation always becomes noticeable at certain timescales, frequently hindering commercial viability. Strikingly, a literature analysis reveals that stability remains secondary in catalyst design, and that each catalysis subdiscipline addresses it in an isolated manner. To reverse this situation, this Review identifies over 120 terms that describe deactivation in the literature for distinct catalyst types (heterogeneous, homogeneous and biocatalysts) and driving forces (thermo-, photo- and electrocatalysis). We classify them into 14 generalized modes that cause either loss, blockage or modification of the catalyst components. This unified framework guides our analysis, providing insights into the prevalence of deactivation mechanisms and commonalities across subdisciplines. Limited fundamental knowledge reflects a low adoption of operando methods that are crucial for studying the underlying dynamic processes. By linking the generalized modes to property alterations, we highlight multi-technique approaches to understand and mitigate catalyst deactivation across relevant scales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The modest and fragmented attention to catalyst stability in the literature.
Fig. 2: Generality of deactivation modes.
Fig. 3: Prevalence of deactivation modes by driving force.
Fig. 4: Prevalence of deactivation modes by catalyst type.
Fig. 5: Tools in deactivation studies.
Fig. 6: Representative applications of operando tools by catalyst type.
Fig. 7: Scope of in situ and operando tools for analysing catalyst deactivation.
Fig. 8: Tools for tackling deactivation across scales.

Similar content being viewed by others

References

  1. Bosch, C., Mittasch, A., Wolf, H. & Stern, G. Catalytic agent for use in producing ammonia. US patent 1,152,930A (1910).

  2. Yoshikawa, Y. et al. Chromium oxide catalyst impregnation regeneration method. US patent 5,093,292A (1990).

  3. Moulijn, J. A., van Diepen, A. E. & Kapteijn, F. Catalyst deactivation: is it predictable? What to do? Appl. Catal. A 212, 3–16 (2001).

    Article  CAS  Google Scholar 

  4. Besson, M. & Gallezot, P. Deactivation of metal catalysts in liquid phase organic reactions. Catal. Today 81, 547–559 (2003).

    Article  CAS  Google Scholar 

  5. Rogers, T. A. & Bommarius, A. S. Utilizing simple biochemical measurements to predict lifetime output of biocatalysts in continuous isothermal processes. Chem. Eng. Sci. 65, 2118–2124 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hauer, B. Embracing nature’s catalysts: a viewpoint on the future of biocatalysis. ACS Catal. 10, 8418–8427 (2020).

    Article  CAS  Google Scholar 

  7. Yamada, H. & Kobayashi, M. Nitrile hydratase and its apllication to industrial production of acrylamide. Biosci. Biotechnol. Biochem. 60, 1391–1400 (1996).

  8. Vogt, E. T. C. & Weckhuysen, B. M. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44, 7342–7370 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Žnidaršič-Plazl, P. Biocatalytic process intensification via efficient biocatalyst immobilization, miniaturization, and process integration. Curr. Opin. Green. Sustain. Chem. 32, 100546 (2021).

    Article  Google Scholar 

  10. van Schie, M. M. C. H., Spöring, J.-D., Bocola, M., Domínguez de María, P. & Rother, D. Applied biocatalysis beyond just buffers – from aqueous to unconventional media. Options and guidelines. Green. Chem. 23, 3191–3206 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Deuss, P. J., Barta, K. & de Vries, J. G. Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catal. Sci. Technol. 4, 1174–1196 (2014).

    Article  CAS  Google Scholar 

  12. da Silva, G. C., Mayrhofer, K. J. J., Ticianelli, E. A. & Cherevko, S. Dissolution stability: the major challenge in the regenerative fuel cells bifunctional catalysis. J. Electrochem. Soc. 165, F1376–F1384 (2018).

    Article  Google Scholar 

  13. Tyo, E. C. & Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10, 577–588 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, Z. W., Chen, L. X., Yang, C. C. & Jiang, Q. Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges. J. Mater. Chem. A 7, 3492–3515 (2019).

    Article  CAS  Google Scholar 

  15. Russo, C. J. & Golovchenko, J. A. Atom-by-atom nucleation and growth of graphene nanopores. Proc. Natl Acad. Sci. USA 109, 5953–5957 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lapointe, S., Khaskin, E., Fayzullin, R. R. & Khusnutdinova, J. R. Stable nickel(I) complexes with electron-rich, sterically-hindered, innocent PNP pincer ligands. Organometallics 38, 1581–1594 (2019).

    Article  CAS  Google Scholar 

  17. Guan, Y., Ingman, V. M., Rooks, B. J. & Wheeler, S. E. AARON: an automated reaction optimizer for new catalysts. J. Chem. Theory Comput. 14, 5249–5261 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Renom-Carrasco, M. & Lefort, L. Ligand libraries for high throughput screening of homogeneous catalysts. Chem. Soc. Rev. 47, 5038–5060 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Ali, M., Ishqi, H. M. & Husain, Q. Enzyme engineering: reshaping the biocatalytic functions. Biotechnol. Bioeng. 117, 1877–1894 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Bernal, C., Rodríguez, K. & Martínez, R. Integrating enzyme immobilization and protein engineering: an alternative path for the development of novel and improved industrial biocatalysts. Biotechnol. Adv. 36, 1470–1480 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. van der Meer, J.-Y., Biewenga, L. & Poelarends, G. J. The generation and exploitation of protein mutability landscapes for enzyme engineering. ChemBioChem 17, 1792–1799 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Scott, S. L. A matter of life(time) and death. ACS Catal. 8, 8597–8599 (2018).

    Article  CAS  Google Scholar 

  23. International Union of Pure and Appliled Chemistry. Manual of symbols and terminology for physicochemical quantities and units—appendix II. Pure Appl. Chem. 46, 71–90 (1976).

    Article  Google Scholar 

  24. Bartholomew, C. H. Mechanisms of catalyst deactivation. Appl. Catal. A 212, 17–60 (2001).

    Article  CAS  Google Scholar 

  25. Bartholomew, C. in Encyclopedia of Catalysis (ed. T. Horváth, I. T.) (Wiley, 2002); https://doi.org/10.1002/0471227617.eoc045. Influential early paper reviewing and classifying mechanisms of catalyst deactivation in thermal heterogeneous catalysis from literature.

  26. Qiao, J., Liu, Y., Hong, F. & Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Chen, Z., Higgins, D., Yu, A., Zhang, L. & Zhang, J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167–3192 (2011).

    Article  CAS  Google Scholar 

  28. Mondal, B. & Dey, A. Development of air-stable hydrogen evolution catalysts. Chem. Commun. 53, 7707–7715 (2017).

    Article  CAS  Google Scholar 

  29. Crabtree, R. H. Deactivation in homogeneous transition metal catalysis: causes, avoidance, and cure. Chem. Rev. 115, 127–150 (2015). Discusses deactivation behaviour in homogeneous thermo-, electro- and photocatalysis.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, L. & Corma, A. Structural transformations of solid electrocatalysts and photocatalysts. Nat. Rev. Chem. 5, 256–276 (2021). Summarizes and compares the structural evolution of heterogeneous thermo-, electro- and photocatalysis.

    Article  CAS  Google Scholar 

  31. Polizzi, K. M., Bommarius, A. S., Broering, J. M. & Chaparro-Riggers, J. F. Stability of biocatalysts. Curr. Opin. Chem. Biol. 11, 220–225 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Ye, R., Zhao, J., Wickemeyer, B. B., Toste, F. D. & Somorjai, G. A. Foundations and strategies of the construction of hybrid catalysts for optimized performances. Nat. Catal. 1, 318–325 (2018).

    Article  Google Scholar 

  33. Caravaca, A., González-Cobos, J. & Vernoux, P. A discussion on the unique features of electrochemical promotion of catalysis (EPOC): are we in the right path towards commercial implementation? Catalysts 10, 1276 (2020).

    Article  CAS  Google Scholar 

  34. Strange, L. E., Yadav, J., Li, X. & Pan, S. Creating electrocatalytic heterojunctions for efficient photoelectrochemical CO2 reduction to chemical fuels. J. Electrochem. Soc. 167, 146518 (2020).

    Article  CAS  Google Scholar 

  35. Barham, J. P. & König, B. Synthetic photoelectrochemistry. Angew. Chem. Int. Ed. 59, 11732–11747 (2020).

    Article  CAS  Google Scholar 

  36. Ko, M. et al. Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell. Nat. Commun. 10, 5123 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pomogailo, A. D., Bravaya, N. M. & Kulikov, A. V. Catalysis by Polymer-Immobilized Metal Complexes (CRC, 1998).

  38. Xu, K., Chen, X., Zheng, R. & Zheng, Y. Immobilization of multi-enzymes on support materials for efficient biocatalysis. Front. Bioeng. Biotechnol. 8, 660 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kaiser, S. K., Chen, Z., Faust Akl, D., Mitchell, S. & Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 120, 11703–11809 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Beale, A. M., Jacques, S. D. M. & Weckhuysen, B. M. Chemical imaging of catalytic solids with synchrotron radiation. Chem. Soc. Rev. 39, 4656–4672 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Loewert, M. et al. Bridging the gap between industry and synchrotron: an operando study at 30 bar over 300 h during Fischer–Tropsch synthesis. React. Chem. Eng. 5, 1071–1082 (2020).

    Article  CAS  Google Scholar 

  42. Portela, R., Perez-Ferreras, S., Serrano-Lotina, A. & Banares, M. A. Engineering operando methodology: understanding catalysis in time and space. Front. Chem. Sci. Eng. 12, 509–536 (2018).

    Article  Google Scholar 

  43. Urakawa, A. Trends and advances in operando methodology. Curr. Opin. Chem. Eng. 12, 31–36 (2016).

    Article  Google Scholar 

  44. Wang, P. et al. Cobalt(−I)- and rhodium(−I)-mediated dearylation of N-aryl N-heterocyclic carbene ligands. Organometallics 39, 2871–2877 (2020).

    Article  CAS  Google Scholar 

  45. Wang, Y., Ruiz Diaz, D. F., Chen, K. S., Wang, Z. & Adroher, X. C. Materials, technological status, and fundamentals of PEM fuel cells – a review. Mater. Today 32, 178–203 (2020).

    Article  CAS  Google Scholar 

  46. Hargreaves, J. S. J. & Munnoch, A. L. A survey of the influence of binders in zeolite catalysis. Catal. Sci. Technol. 3, 1165–1171 (2013).

    Article  CAS  Google Scholar 

  47. Mitchell, S., Michels, N.-L. & Perez-Ramirez, J. From powder to technical body: the undervalued science of catalyst scale up. Chem. Soc. Rev. 42, 6094–6112 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Barbier, J. Deactivation of reforming catalysts by coking – a review. Appl. Catal. 23, 225–243 (1986).

    Article  CAS  Google Scholar 

  49. Lange, J.-P. Renewable feedstocks: the problem of catalyst deactivation and its mitigation. Angew. Chem. Int. Ed. 54, 13186–13197 (2015). Highlights the main challenges concerning the long-term stability of catalysts for the conversion of bio-based feedstock into fuels and chemicals.

    Article  CAS  Google Scholar 

  50. Spöri, C., Kwan, J. T. H., Bonakdarpour, A., Wilkinson, D. P. & Strasser, P. The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem. Int. Ed. 56, 5994–6021 (2017).

    Article  Google Scholar 

  51. Kocha, S. S. in Polymer Electrolyte Fuel Cell Degradation (eds Mench, M. M. et al.) 89–214 (Academic, 2012).

  52. Deacon, H. Improvement in the manufacture of chlorine. US patent 85,370A (1868).

  53. Aalbersberg, W. I. J. in Industrial Proteins in Perspective Vol. 23 (eds Aalbersberg, W. Y. et al.) 7–8 (Elsevier, 2003).

  54. Zarubina, V. & Melián-Cabrera, I. On the geometric trajectories of pores during the thermal sintering of relevant catalyst supports. Scr. Mater. 194, 113679 (2021).

    Article  CAS  Google Scholar 

  55. Meißner, A., Alberico, E., Drexler, H.-J., Baumann, W. & Heller, D. Rhodium diphosphine complexes: a case study for catalyst activation and deactivation. Catal. Sci. Technol. 4, 3409–3425 (2014).

    Article  Google Scholar 

  56. Bartholomew, C. H., Agrawal, P. K. & Katzer, J. R. in Advances in Catalysis Vol. 31 (eds Eley, D. D. et al.) 135–242 (Academic, 1982).

  57. Hong, G. & Pachter, R. Inhibition of biocatalysis in [Fe–Fe] hydrogenase by oxygen: molecular dynamics and density functional theory calculations. ACS Chem. Biol. 7, 1268–1275 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Folke, J., Song, H., Schittkowski, J., Schlögl, R. & Ruland, H. Oxygen poisoning in laboratory testing of iron-based ammonia synthesis catalysts and its potential sources. Chem. Ing. Tech. 92, 1567–1573 (2020).

    Article  CAS  Google Scholar 

  59. Popeney, C. S. & Guan, Z. Effect of ligand electronics on the stability and chain transfer rates of substituted Pd(II) α-diimine catalysts. Macromolecules 43, 4091–4097 (2010).

    Article  CAS  Google Scholar 

  60. Vilé, G. et al. A stable single-site palladium catalyst for hydrogenations. Angew. Chem. Int. Ed. 54, 11265–11269 (2015).

    Article  Google Scholar 

  61. Boudart, M. Electronic chemical potential in chemisorption and catalysis. J. Am. Chem. Soc. 74, 1531–1535 (1952).

    Article  CAS  Google Scholar 

  62. Evans, D., Yagupsky, G. & Wilkinson, G. The reaction of hydridocarbonyltris(triphenylphosphine)rhodium with carbon monoxide, and of the reaction products, hydridodicarbonylbis(triphenylphosphine)rhodium and dimeric species, with hydrogen. J. Chem. Soc. A https://doi.org/10.1039/J19680002660 (1968).

  63. Diebolt, O., van Leeuwen, P. W. N. M. & Kamer, P. C. J. Operando spectroscopy in catalytic carbonylation reactions. ACS Catal. 2, 2357–2370 (2012).

    Article  CAS  Google Scholar 

  64. Macedo, L. J. A., Hassan, A., Sedenho, G. C. & Crespilho, F. N. Assessing electron transfer reactions and catalysis in multicopper oxidases with operando X-ray absorption spectroscopy. Nat. Commun. 11, 316 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mores, D. et al. Space- and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. Chem. Eur. J. 14, 11320–11327 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Goetze, J. & Weckhuysen, B. M. Spatiotemporal coke formation over zeolite ZSM-5 during the methanol-to-olefins process as studied with operando UV-vis spectroscopy: a comparison between H-ZSM-5 and Mg-ZSM-5. Catal. Sci. Technol. 8, 1632–1644 (2018).

    Article  CAS  Google Scholar 

  67. Lezcano-Gonzalez, I. et al. Insight into the effects of confined hydrocarbon species on the lifetime of methanol conversion catalysts. Nat. Mater. 19, 1081–1087 (2020). Monitors the mobility of hydrocarbon species in the micropores of zeolite catalysts at the onset of activation and deactivation in the methanol-to-hydrocarbons reaction.

    Article  CAS  PubMed  Google Scholar 

  68. Meirer, F. & Weckhuysen, B. M. Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. Nat. Rev. Mater. 3, 324–340 (2018).

    Article  Google Scholar 

  69. Rabeah, J. et al. Formation, operation and deactivation of Cr catalysts in ethylene tetramerization directly assessed by operando EPR and XAS. ACS Catal. 3, 95–102 (2013).

    Article  CAS  Google Scholar 

  70. Tran, B. L. et al. Operando XAFS studies on Rh(CAAC)-catalyzed arene hydrogenation. ACS Catal. 9, 4106–4114 (2019).

    Article  CAS  Google Scholar 

  71. Tromp, M. et al. Deactivation processes of homogeneous Pd catalysts using in situ time resolved spectroscopic techniques. Chem. Commun. https://doi.org/10.1039/B206758G (2003). Observation of inactive dimers and trimers during the first stages of deactivation in palladium homogeneous catalysts combining operando UV-vis and X-ray absorption spectroscopy.

  72. Bolivar, J. M., Eisl, I. & Nidetzky, B. Advanced characterization of immobilized enzymes as heterogeneous biocatalysts. Catal. Today 259, 66–80 (2016). Analyses the applicability of available methods for characterizing the activity and stability of immbobilized enzymes.

    Article  CAS  Google Scholar 

  73. Li, H. et al. Suppressing hydrogen peroxide generation to achieve oxygen-insensitivity of a [NiFe] hydrogenase in redox active films. Nat. Commun. 11, 920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhong, L., Chen, D. & Zafeiratos, S. A mini review of in situ near-ambient pressure XPS studies on non-noble, late transition metal catalysts. Catal. Sci. Technol. 9, 3851–3867 (2019).

    Article  CAS  Google Scholar 

  75. Tao, F. & Salmeron, M. In situ studies of chemistry and structure of materials in reactive environments. Science 331, 171–174 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Hideto, Y. et al. Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335, 317–319 (2012). Uses aberration-corrected transmission electron microscopy to visualize changes in both ceria-supported gold nanoparticles and the adsorbed species during CO oxidation.

    Article  Google Scholar 

  77. Bañares, M. A. Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal. Today 100, 71–77 (2005).

    Article  Google Scholar 

  78. Meunier, F. C. The design and testing of kinetically-appropriate operando spectroscopic cells for investigating heterogeneous catalytic reactions. Chem. Soc. Rev. 39, 4602–4614 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Urakawa, A., Maeda, N. & Baiker, A. Space- and time-resolved combined DRIFT and Raman spectroscopy: monitoring dynamic surface and bulk processes during NOx storage reduction. Angew. Chem. Int. Ed. 47, 9256–9259 (2008).

    Article  CAS  Google Scholar 

  80. Handoko, A. D., Wei, F., Jenndy, Yeo, B. S. & Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1, 922–934 (2018).

    Article  CAS  Google Scholar 

  81. Velasco-Velez, J. J. et al. Photoelectron spectroscopy at the graphene–liquid interface reveals the electronic structure of an electrodeposited cobalt/graphene electrocatalyst. Angew. Chem. Int. Ed. 54, 14554–14558 (2015).

    Article  CAS  Google Scholar 

  82. Kondrat, S. A. & van Bokhoven, J. A. A perspective on counting catalytic active sites and rates of reaction using X-ray spectroscopy. Top. Catal. 62, 1218–1227 (2019).

    Article  CAS  Google Scholar 

  83. Moonen, J., Slot, J., Lefferts, L., Bazin, D. & Dexpert, H. The influence of polydispersity and inhomogeneity on EXAFS of bimetallic catalysts. Physica B 208–209, 689–690 (1995).

    Article  Google Scholar 

  84. Bouwkamp-Wijnoltz, A. L. et al. On active-site heterogeneity in pyrolyzed carbon-supported iron porphyrin catalysts for the electrochemical reduction of oxygen: an in situ Mössbauer study. J. Phys. Chem. B 106, 12993–13001 (2002).

    Article  CAS  Google Scholar 

  85. Resasco, J. & Christopher, P. Atomically dispersed Pt-group catalysts: reactivity, uniformity, structural evolution, and paths to increased functionality. J. Phys. Chem. Lett. 11, 10114–10123 (2020). Demonstrates the relevance of improving the uniformity of catalytic materials for understanding their structural evolution under different conditions.

    Article  CAS  PubMed  Google Scholar 

  86. Kashin, A. S. & Ananikov, V. P. Monitoring chemical reactions in liquid media using electron microscopy. Nat. Rev. Chem. 3, 624–637 (2019).

    Article  CAS  Google Scholar 

  87. Corma, A. & Sauvanaud, L. FCC testing at bench scale: new units, new processes, new feeds. Catal. Today 218–219, 107–114 (2013). Highlights the approaches and challenges of achieving relevant conditions in evaluating the performance of fluid catalytic cracking catalysts at the bench scale.

    Article  Google Scholar 

  88. Weber, S. et al. Hard X-ray nanotomography for 3D analysis of coking in nickel-based catalysts. Angew. Chem. Int. Ed. 60, 21772–21777 (2021).

    Article  CAS  Google Scholar 

  89. Vamvakeros, A. et al. 5D operando tomographic diffraction imaging of a catalyst bed. Nat. Commun. 9, 4751 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mitchell, S., Gerchow, L., Warringham, R., Crivelli, P. & Pérez-Ramírez, J. Shedding new light on nanostructured catalysts with positron annihilation spectroscopy. Small Methods 2, 1800268 (2018).

    Article  Google Scholar 

  91. Lian, Z. et al. Revealing the Janus character of the coke precursor in the propane direct dehydrogenation on Pt catalysts from a kMC simulation. ACS Catal. 8, 4694–4704 (2018).

    Article  CAS  Google Scholar 

  92. Stamatakis, M., Christiansen, M. A., Vlachos, D. G. & Mpourmpakis, G. Multiscale modeling reveals poisoning mechanisms of MgO-supported Au clusters in CO oxidation. Nano Lett. 12, 3621–3626 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Hartman, T., Geitenbeek, R. G., Whiting, G. T. & Weckhuysen, B. M. Operando monitoring of temperature and active species at the single catalyst particle level. Nat. Catal. 2, 986–996 (2019).

    Article  CAS  Google Scholar 

  94. Weckhuysen, B. M. Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew. Chem. Int. Ed. 48, 4910–4943 (2009).

    Article  CAS  Google Scholar 

  95. Shirzad, M., Karimi, M., Silva, J. A. C. & Rodrigues, A. E. Moving bed reactors: challenges and progress of experimental and theoretical studies in a century of research. Ind. Eng. Chem. Res. 58, 9179–9198 (2019).

    Article  CAS  Google Scholar 

  96. Ni, P., Liu, B. & He, G. An online optimization strategy for a fluid catalytic cracking process using a case-based reasoning method based on big data technology. RSC Adv. 11, 28557–28564 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vitola, G. et al. Biocatalytic membrane reactor development for organophosphates degradation. J. Hazard. Mater. 365, 789–795 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Román-Leshkov, Y., Chheda, J. N. & Dumesic, J. A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312, 1933–1937 (2006).

    Article  PubMed  Google Scholar 

  99. Li, H. et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels. Science 367, 667–671 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Lari, G. M. et al. Catalyst and process design for the continuous manufacture of rare sugar alcohols by epimerization–hydrogenation of aldoses. ChemSusChem 9, 3407–3418 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. González-Garay, A. et al. Plant-to-planet analysis of CO2-based methanol processes. Energy Environ. Sci. 12, 3425–3436 (2019).

    Article  Google Scholar 

  102. Giulimondi, V. et al. Redispersion strategy for high-loading carbon-supported metal catalysts with controlled nuclearity. J. Mater. Chem. A 10, 5953–5961 (2022).

    Article  CAS  Google Scholar 

  103. Kuang, Y. et al. Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration. Nat. Energy 2, 16191 (2016).

    Article  Google Scholar 

  104. Zhao, H. & van der Donk, W. A. Regeneration of cofactors for use in biocatalysis. Curr. Opin. Biotechnol. 14, 583–589 (2003). Highlights the relevance of developing efficient routes for cofactor regeneration to improve the commercial viability of cofactor-dependent enzymes.

    Article  CAS  PubMed  Google Scholar 

  105. Hydrogen and Fuel Cell Technologies Office. DOE technical targets for hydrogen production from electrolysis. US Department of Energy https://www.energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-production-electrolysis (2019).

  106. US DRIVE Fuel Cell Tech Team. Appendix A: FCTT AST and polarization curve protocols for PEMFCs. US Department of Energy https://www.energy.gov/sites/default/files/2015/08/f25/fcto_dwg_usdrive_fctt_accelerated_stress_tests_jan2013.pdf (2013).

Download references

Acknowledgements

We acknowledge financial support from the Swiss National Science Foundation through the National Center of Competence in Research (NCCR) Catalysis (grant 180544).

Author information

Authors and Affiliations

Authors

Contributions

J.P.-R. conceived and coordinated the study. A.J.M., S.M., C.M. and J.P.-R. wrote the article. A.J.M., S.M., C.M. and S.J. conducted the literature search and all the authors analysed and conceptualized the results.

Corresponding author

Correspondence to Javier Pérez-Ramírez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Enrico Andreoli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1, Tables 1–3 and Figs. 1–6.

Supplementary Data 1

Notation and results for literature searches.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín, A.J., Mitchell, S., Mondelli, C. et al. Unifying views on catalyst deactivation. Nat Catal 5, 854–866 (2022). https://doi.org/10.1038/s41929-022-00842-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00842-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing