Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells

Abstract

Following extensive evidence for the formation of four-stranded DNA G-quadruplex structures in vitro, DNA G-quadruplexes have been observed within human cells. Although chemically distinct, RNA can also fold in vitro into G-quadruplex structures that are highly stable because of the 2′-hydroxyl group. However, RNA G-quadruplexes have not yet been reported in cells. Here, we demonstrate the visualization of RNA G-quadruplex structures within the cytoplasm of human cells using a G-quadruplex structure-specific antibody. We also demonstrate that small molecules that bind to G-quadruplexes in vitro can trap endogenous RNA G-quadruplexes when applied to cells. Furthermore, a small molecule that exhibits a preference for RNA G-quadruplexes rather than DNA G-quadruplexes in biophysical experiments also shows the same selectivity within a cellular context. Our findings provide substantive evidence for RNA G-quadruplex formation in the human transcriptome, and corroborate the selectivity and application of stabilizing ligands that target G-quadruplexes within a cellular context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The G-quadruplex structure-specific antibody, BG4, binds with high affinity to RNA G-quadruplex structures.
Figure 2: Visualization of RNA G-quadruplexes in the cytoplasm of human cells.
Figure 3: RNA G-quadruplex structures in human cells are stabilized by a small-molecule G-quadruplex ligand.
Figure 4: Selective stabilization of endogenous RNA, but not DNA, G-quadruplexes after cell treatment with a RNA G-quadruplex-specific ligand.

Similar content being viewed by others

References

  1. Sen, D. & Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334, 364–366 (1988).

    Article  CAS  Google Scholar 

  2. Davis, J. T. G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angew. Chem. Int. Ed. 43, 668–698 (2004).

    Article  CAS  Google Scholar 

  3. Schaffitzel, C. et al. In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc. Natl Acad. Sci. USA 98, 8572–8577 (2001).

    Article  CAS  Google Scholar 

  4. Biffi, G., Tannahill, D., McCafferty, J. & Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nature Chem. 5, 182–186 (2013).

    Article  CAS  Google Scholar 

  5. Rodriguez, R. et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nature Chem. Biol. 8, 301–310 (2012).

    Article  CAS  Google Scholar 

  6. Bochman, M. L., Paeschke, K. & Zakian, V. A. DNA secondary structures: stability and function of G-quadruplex structures. Nature Rev. Genet. 13, 770–780 (2012).

    Article  CAS  Google Scholar 

  7. Maizels, N. & Gray, L. T. The G4 genome. PLoS Genet. 9, e1003468 (2013).

    Article  CAS  Google Scholar 

  8. Balasubramanian, S., Hurley, L. H. & Neidle, S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nature Rev. Drug Discov. 10, 261–275 (2011).

    Article  CAS  Google Scholar 

  9. Sacca, B., Lacroix, L. & Mergny, J. L. The effect of chemical modifications on the thermal stability of different G-quadruplex-forming oligonucleotides. Nucleic Acids Res. 33, 1182–1192 (2005).

    Article  CAS  Google Scholar 

  10. Zhang, A. Y., Bugaut, A. & Balasubramanian, S. A sequence-independent analysis of the loop length dependence of intramolecular RNA G-quadruplex stability and topology. Biochemistry 50, 7251–7258 (2011).

    Article  CAS  Google Scholar 

  11. Collie, G. W., Haider, S. M., Neidle, S. & Parkinson, G. N. A crystallographic and modelling study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Res. 38, 5569–5580 (2010).

    Article  CAS  Google Scholar 

  12. Collie, G. W., Sparapani, S., Parkinson, G. N. & Neidle, S. Structural basis of telomeric RNA quadruplex – acridine ligand recognition. J. Am. Chem. Soc. 133, 2721–2728 (2011).

    Article  CAS  Google Scholar 

  13. Collie, G. et al. Selectivity in small molecule binding to human telomeric RNA and DNA quadruplexes. Chem. Commun. 7482–7484 (2009).

  14. Di Antonio, M. et al. Selective RNA versus DNA G-quadruplex targeting by in situ click chemistry. Angew. Chem. Int. Ed. 51, 11073–11078 (2012).

    Article  CAS  Google Scholar 

  15. Eddy, J. & Maizels, N. Conserved elements with potential to form polymorphic G-quadruplex structures in the first intron of human genes. Nucleic Acids Res. 36, 1321–1333 (2008).

    Article  CAS  Google Scholar 

  16. Huppert, J. L., Bugaut, A., Kumari, S. & Balasubramanian, S. G-quadruplexes: the beginning and end of UTRs. Nucleic Acids Res. 36, 6260–6268 (2008).

    Article  CAS  Google Scholar 

  17. Kumari, S., Bugaut, A., Huppert, J. L. & Balasubramanian, S. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nature Chem. Biol. 3, 218–221 (2007).

    Article  CAS  Google Scholar 

  18. Bugaut, A. & Balasubramanian, S. 5′-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res. 40, 4727–4741 (2012).

    Article  CAS  Google Scholar 

  19. Agarwala, P., Pandey, S., Mapa, K. & Maiti, S. The G-quadruplex augments translation in the 5′ untranslated region of transforming growth factor β2. Biochemistry 52, 1528–1538 (2013).

    Article  CAS  Google Scholar 

  20. Schaeffer, C. et al. The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif. EMBO J. 20, 4803–4813 (2001).

    Article  CAS  Google Scholar 

  21. Morris, M. J., Negishi, Y., Pazsint, C., Schonhoft, J. D. & Basu, S. An RNA G-quadruplex is essential for cap-independent translation initiation in human VEGF IRES. J. Am. Chem. Soc. 132, 17831–17839 (2010).

    Article  CAS  Google Scholar 

  22. Bonnal, S. et al. A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. J. Biol. Chem. 278, 39330–39336 (2003).

    Article  CAS  Google Scholar 

  23. Bugaut, A., Rodriguez, R., Kumari, S., Hsu, S. T. & Balasubramanian, S. Small molecule-mediated inhibition of translation by targeting a native RNA G-quadruplex. Org. Biomol. Chem. 8, 2771–2776 (2010).

    Article  CAS  Google Scholar 

  24. Morris, M. J., Wingate, K. L., Silwal, J., Leeper, T. C. & Basu, S. The porphyrin TmPyP4 unfolds the extremely stable G-quadruplex in MT3-MMP mRNA and alleviates its repressive effect to enhance translation in eukaryotic cells. Nucleic Acids Res. 40, 4137–4145 (2012).

    Article  CAS  Google Scholar 

  25. Faudale, M., Cogoi, S. & Xodo, L. E. Photoactivated cationic alkyl-substituted porphyrin binding to g4-RNA in the 5′-UTR of KRAS oncogene represses translation. Chem. Commun. 48, 874–876 (2012).

    Article  CAS  Google Scholar 

  26. Gomez, D. et al. A G-quadruplex structure within the 5′-UTR of TRF2 mRNA represses translation in human cells. Nucleic Acids Res. 38, 7187–7198 (2010).

    Article  CAS  Google Scholar 

  27. Halder, K., Largy, E., Benzler, M., Teulade-Fichou, M. P. & Hartig, J. S. Efficient suppression of gene expression by targeting 5′-UTR-based RNA quadruplexes with bisquinolinium compounds. Chem Bio Chem 12, 1663–1668 (2011).

    Article  CAS  Google Scholar 

  28. Christiansen, J., Kofod, M. & Nielsen, F. C. A guanosine quadruplex and two stable hairpins flank a major cleavage site in insulin-like growth factor II mRNA. Nucleic Acids Res. 22, 5709–5716 (1994).

    Article  CAS  Google Scholar 

  29. Fisette, J. F., Montagna, D. R., Mihailescu, M. R. & Wolfe, M. S. A G-rich element forms a G-quadruplex and regulates BACE1 mRNA alternative splicing. J. Neurochem. 121, 763–773 (2012).

    Article  CAS  Google Scholar 

  30. Marcel, V. et al. G-quadruplex structures in TP53 intron 3: role in alternative splicing and in production of p53 mRNA isoforms. Carcinogenesis 32, 271–278 (2011).

    Article  CAS  Google Scholar 

  31. Beaudoin, J. D. & Perreault, J. P. Exploring mRNA 3′-UTR G-quadruplexes: evidence of roles in both alternative polyadenylation and mRNA shortening. Nucleic Acids Res. 41, 5898–5911 (2013).

    Article  CAS  Google Scholar 

  32. Todd, A. G., Lin, H., Ebert, A. D., Liu, Y. & Androphy, E. J. COPI transport complexes bind to specific RNAs in neuronal cells. Hum. Mol. Genet. 22, 729–736 (2013).

    Article  CAS  Google Scholar 

  33. Subramanian, M. et al. G-quadruplex RNA structure as a signal for neurite mRNA targeting. EMBO Rep. 12, 697–704 (2011).

    Article  CAS  Google Scholar 

  34. Biffi, G., Tannahill, D. & Balasubramanian, S. An intramolecular G-quadruplex structure is required for binding of telomeric repeat-containing RNA to the telomeric protein TRF2. J. Am. Chem. Soc. 134, 11974–11976 (2012).

    Article  CAS  Google Scholar 

  35. Brown, V. et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107, 477–487 (2001).

    Article  CAS  Google Scholar 

  36. Darnell, J. C. et al. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107, 489–499 (2001).

    Article  CAS  Google Scholar 

  37. Marnef, A. et al. Distinct functions of maternal and somatic Pat1 protein paralogs. RNA 16, 2094–2107 (2010).

    Article  CAS  Google Scholar 

  38. Creacy, S. D. et al. G4 resolvase 1 binds both DNA and RNA tetramolecular quadruplex with high affinity and is the major source of tetramolecular quadruplex G4-DNA and G4-RNA resolving activity in HeLa cell lysates. J. Biol. Chem. 283, 34626–34634 (2008).

    Article  CAS  Google Scholar 

  39. Vaughn, J. P. et al. The DEXH protein product of the DHX36 gene is the major source of tetramolecular quadruplex G4-DNA resolving activity in HeLa cell lysates. J. Biol. Chem. 280, 38117–38120 (2005).

    Article  CAS  Google Scholar 

  40. Chakraborty, P. & Grosse, F. Human DHX9 helicase preferentially unwinds RNA-containing displacement loops (R-loops) and G-quadruplexes. DNA Repair 10, 654–665 (2011).

    Article  CAS  Google Scholar 

  41. Fernando, H., Rodriguez, R. & Balasubramanian, S. Selective recognition of a DNA G-quadruplex by an engineered antibody. Biochemistry 47, 9365–9371 (2008).

    Article  CAS  Google Scholar 

  42. Shahid, R., Bugaut, A. & Balasubramanian, S. The BCL-2 5′ untranslated region contains an RNA G-quadruplex-forming motif that modulates protein expression. Biochemistry 49, 8300–8306 (2010).

    Article  CAS  Google Scholar 

  43. Di Antonio, M., Rodriguez, R. & Balasubramanian, S. Experimental approaches to identify cellular G-quadruplex structures and functions. Methods 57, 84–92 (2012).

    Article  CAS  Google Scholar 

  44. Collie, G. W. & Parkinson, G. N. The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem. Soc. Rev. 40, 5867–5892 (2011).

    Article  CAS  Google Scholar 

  45. Rodriguez, R. et al. A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J. Am. Chem. Soc. 130, 15758–15759 (2008).

    Article  CAS  Google Scholar 

  46. Muller, S. et al. Pyridostatin analogues promote telomere dysfunction and long-term growth inhibition in human cancer cells. Org. Biomol. Chem. 10, 6537–6546 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Sanders for stimulating discussions and Cancer Research UK for funding.

Author information

Authors and Affiliations

Authors

Contributions

G.B. and M.D.A. carried out the experiments. G.B., M.D.A., D.T. and S.B. designed the experiments. G.B., D.T. and S.B. co-wrote the manuscript.

Corresponding author

Correspondence to Shankar Balasubramanian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2009 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biffi, G., Di Antonio, M., Tannahill, D. et al. Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nature Chem 6, 75–80 (2014). https://doi.org/10.1038/nchem.1805

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1805

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing