Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Temporal separation of catalytic activities allows anti-Markovnikov reductive functionalization of terminal alkynes

Abstract

There is currently great interest in the development of multistep catalytic processes in which one or several catalysts act sequentially to rapidly build complex molecular structures. Many enzymes—often the inspiration for new synthetic transformations—are capable of processing a single substrate through a chain of discrete, mechanistically distinct catalytic steps. Here, we describe an approach to emulate the efficiency of these natural reaction cascades within a synthetic catalyst by the temporal separation of catalytic activities. In this approach, a single catalyst exhibits multiple catalytic activities sequentially, allowing for the efficient processing of a substrate through a cascade pathway. Application of this design strategy has led to the development of a method to effect the anti-Markovnikov (linear-selective) reductive functionalization of terminal alkynes. The strategy of temporal separation may facilitate the development of other efficient synthetic reaction cascades.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of previous auto-tandem catalytic reactions and tandem reactions exhibiting temporal separation of catalytic activities.
Figure 2: Optimization and spectroscopic studies of the reductive hydration reaction.
Figure 3: Triple-cascade anti-Markovnikov hydration, olefination and enone reduction.

Similar content being viewed by others

References

  1. Bornscheuer, U. T. & Kazlauskas, R. J. Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways. Angew. Chem. Int. Ed. 43, 6032–6040 (2004).

    Article  CAS  Google Scholar 

  2. Fogg, D. E. & dos Santos, E. N. Tandem catalysis: a taxonomy and illustrative review. Coord. Chem. Rev. 248, 2365–2379 (2004).

    Article  CAS  Google Scholar 

  3. Pittman, C. U. & Liang, Y. F. Sequential catalytic condensation–hydrogenation of ketones. J. Org. Chem. 45, 5048–5052 (1980).

    Article  CAS  Google Scholar 

  4. Breit, B. & Zahn, S. K. Domino hydroformylation–Wittig reactions. Angew. Chem. Int. Ed. 38, 969–971 (1999).

    Article  CAS  Google Scholar 

  5. Edwards, M. G. & Williams, J. M. J. Catalytic electronic activation: indirect ‘Wittig' reaction of alcohols. Angew. Chem. Int. Ed. 41, 4740–4743 (2002).

    Article  CAS  Google Scholar 

  6. Seayad, A. et al. Internal olefins to linear amines. Science 297, 1676–1678 (2002).

    Article  CAS  Google Scholar 

  7. Chen, J. R. et al. Ru-catalyzed tandem cross-metathesis/intramolecular-hydroarylation sequence. Angew. Chem. Int. Ed. 47, 2489–2492 (2008).

    Article  CAS  Google Scholar 

  8. Cadierno, V. et al. Ruthenium-catalyzed redox isomerization/transfer hydrogenation in organic and aqueous media: a one-pot tandem process for the reduction of allylic alcohols. Green Chem. 11, 1992–2000 (2009).

    Article  CAS  Google Scholar 

  9. Behr, A., Reyer, S. & Tenhumberg, N. Selective hydroformylation–hydrogenation tandem reaction of isoprene to 3-methylpentanal. Dalton Trans 40, 11742–11747 (2011).

    Article  CAS  Google Scholar 

  10. Kanbayashi, N., Takenaka, K., Okamura, T. & Onitsuka, K. Asymmetric auto-tandem catalysis with a planar-chiral ruthenium complex: sequential allylic amidation and atom-transfer radical cyclization. Angew. Chem. Int. Ed. 52, 4897–4901 (2013).

    Article  CAS  Google Scholar 

  11. Fleischer, I. et al. From olefins to alcohols: efficient and regioselective ruthenium-catalyzed domino hydroformylation/reduction sequence. Angew. Chem. Int. Ed. 52, 2949–2953 (2013).

    Article  CAS  Google Scholar 

  12. Pijnenburg, N. J., Cabon, Y. H., van Koten, G. & Klein Gebbink, R. J. Mechanistic studies on the SCS-pincer palladium(II)-catalyzed tandem stannylation/electrophilic allylic substitution of allyl chlorides with hexamethylditin and benzaldehydes. Chem. Eur. J. 19, 4858–4868 (2013).

    Article  CAS  Google Scholar 

  13. Yadav, A. K. et al. ‘Base effect' in the auto-tandem palladium-catalyzed synthesis of amino-substituted 1-methyl-1H-α-carbolines. Org. Lett. 15, 1060–1063 (2013).

    Article  CAS  Google Scholar 

  14. Li, L. & Herzon, S. B. Regioselective reductive hydration of alkynes to form branched or linear alcohols. J. Am. Chem. Soc. 134, 17376–17379 (2012).

    Article  CAS  Google Scholar 

  15. Lynam, J. M. Recent mechanistic and synthetic developments in the chemistry of transition-metal vinylidene complexes. Chem. Eur. J. 16, 8238–8247 (2010).

    Article  CAS  Google Scholar 

  16. Campbell, A. N., White, P. B., Guzei, I. A. & Stahl, S. S. Allylic C–H acetoxylation with a 4,5-diazafluorenone-ligated palladium catalyst: a ligand-based strategy to achieve aerobic catalytic turnover. J. Am. Chem. Soc. 132, 15116–15119 (2010).

    Article  CAS  Google Scholar 

  17. Anderson, B. J., Keith, J. A. & Sigman, M. S. Experimental and computational study of a direct O2-coupled Wacker oxidation: water dependence in the absence of Cu salts. J. Am. Chem. Soc. 132, 11872–11874 (2010).

    Article  CAS  Google Scholar 

  18. Dong, G., Teo, P., Wickens, Z. K. & Grubbs, R. H. Primary alcohols from terminal olefins: formal anti-Markovnikov hydration via triple relay catalysis. Science 333, 1609–1612 (2011).

    Article  CAS  Google Scholar 

  19. Zbieg, J. R., Yamaguchi, E., McInturff, E. L. & Krische, M. J. Enantioselective C–H crotylation of primary alcohols via hydrohydroxyalkylation of butadiene. Science 336, 324–327 (2012).

    Article  CAS  Google Scholar 

  20. Schnapperelle, I., Hummel, W. & Gröger, H. Formal asymmetric hydration of non-activated alkenes in aqueous medium through a ‘chemoenzymatic catalytic system'. Chem. Eur. J. 18, 1073–1076 (2012).

    Article  CAS  Google Scholar 

  21. Takahashi, K., Yamashita, M. & Nozaki, K. Tandem hydroformylation/hydrogenation of alkenes to normal alcohols using Rh/Ru dual catalyst or Ru single component catalyst. J. Am. Chem. Soc. 134, 18746–18757 (2012).

    Article  CAS  Google Scholar 

  22. Hamilton, D. S. & Nicewicz, D. A. Direct catalytic anti-Markovnikov hydroetherification of alkenols. J. Am. Chem. Soc. 134, 18577–18580 (2012).

    Article  CAS  Google Scholar 

  23. Beller, M., Seayad, J., Tillack, A. & Jiao, H. Catalytic Markovnikov and anti-Markovnikov functionalization of alkenes and alkynes: recent developments and trends. Angew. Chem. Int. Ed. 43, 3368–3398 (2004).

    Article  CAS  Google Scholar 

  24. Tokunaga, M. et al. Ruthenium-catalyzed hydration of 1-alkynes to give aldehydes: insight into anti-Markovnikov regiochemistry. J. Am. Chem. Soc. 123, 11917–11924 (2001).

    Article  CAS  Google Scholar 

  25. Grotjahn, D. B. & Lev, D. A. A general bifunctional catalyst for the anti-Markovnikov hydration of terminal alkynes to aldehydes gives enzyme-like rate and selectivity enhancements. J. Am. Chem. Soc. 126, 12232–12233 (2004).

    Article  CAS  Google Scholar 

  26. Chevallier, F. & Breit, B. Self-assembled bidentate ligands for Ru-catalyzed anti-Markovnikov hydration of terminal alkynes. Angew. Chem. Int. Ed. 45, 1599–1602 (2006).

    Article  CAS  Google Scholar 

  27. Boeck, F., Kribber, T., Xiao, L. & Hintermann, L. Mixed phosphane η5-CpRuCl(PR3)2 complexes as ambifunctional catalysts for anti-Markovnikov hydration of terminal alkynes. J. Am. Chem. Soc. 133, 8138–8141 (2011).

    Article  CAS  Google Scholar 

  28. Trost, B. M., Frederiksen, M. U. & Rudd, M. T. Ruthenium-catalyzed reactions—a treasure trove of atom-economic transformations. Angew. Chem. Int. Ed. 44, 6630–6666 (2005).

    Article  CAS  Google Scholar 

  29. Hintermann, L., Xiao, L., Labonne, A. l. & Englert, U. [CpRu(η6-naphthalene)]PF6 as precursor in complex synthesis and catalysis with the cyclopentadienyl-ruthenium(II) cation. Organometallics 28, 5739–5748 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the David and Lucile Packard Foundation. The authors thank J.A. Ellman for helpful discussions. S.B.H. is a fellow of the David and Lucile Packard and Alfred P. Sloan Foundations, a Camille Dreyfus Teacher–Scholar, and a Cottrell Scholar of the Research Corporation for Science Advancement.

Author information

Authors and Affiliations

Authors

Contributions

L.L. and S.B.H. designed the research, analysed the data and wrote the manuscript. L.L. performed the experiments.

Corresponding author

Correspondence to Seth B. Herzon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2286 kb)

Supplementary information

Crystallographic data for compound 9 (CIF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Herzon, S. Temporal separation of catalytic activities allows anti-Markovnikov reductive functionalization of terminal alkynes. Nature Chem 6, 22–27 (2014). https://doi.org/10.1038/nchem.1799

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1799

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing